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Abstract: We present the first necessary and sufficient conditions for there to be a 
unique perfect-foresight solution to an otherwise linear dynamic model with 
occasionally binding constraints, given a fixed terminal condition. We derive further 
conditions on the existence of a solution in such models. These results give determinacy 
conditions for models with occasionally binding constraints, much as Blanchard and 
Kahn (1980) did for linear models. In an application, we show that widely used New 
Keynesian models with endogenous states possess multiple perfect foresight 
equilibrium paths when there is a zero lower bound on nominal interest rates, even when 
agents believe that the central bank will eventually attain its long-run, positive inflation 
target. This illustrates that a credible long-run inflation target does not render the Taylor 
principle sufficient for determinacy in the presence of the zero lower bound. However, 
we show that price level targeting does restore determinacy in these situations.    
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1. Introduction 

Since the financial crisis of 2007-2008, many central banks around the world have 
chosen to keep their nominal interest rate close to 0%. While in a few countries, rates 
on some assets have gone slightly negative, central banks are unable to push their target 
rate to the level a Taylor rule might suggest since agents always have the option of 
holding cash. In practice then, central banks face a zero lower bound (ZLB) on their 
policy rate, which limits their ability to provide stimulus in severe recessions. 
Furthermore, during the crisis, both households, firms and banks have hit their 
borrowing constraints, which has limited their ability to smooth out its effects. However, 
the theoretical results on determinacy which justify the Taylor principle do not apply to 
models with occasionally binding constraints (OBCs), such as the zero lower bound, or 
a borrowing constraint, meaning that the profession still lacks all of the necessary tools 
for understanding the behaviour of such models. 

In this paper, we develop theoretical tools for understanding the behaviour of models 
with occasionally binding constraints.2 Much as the seminal paper of Blanchard and 
Kahn (1980) provided necessary and sufficient conditions for the existence of a unique 
perfect foresight solution to a linear model that returns to a given steady-state, we will 
provide the first necessary and sufficient conditions for there to be a unique perfect 
foresight solution, returning to a given steady-state, in otherwise linear models with 
occasionally binding constraints. We will also provide both necessary conditions and 
sufficient conditions for there to exist any such solutions. When no solution returning 
to the given steady-state exists, this implies that the model must converge to some 
alternative steady-state. 

As was observed by Benhabib, Schmitt-Grohé, and Uribe (2001a; 2001b), in the 
presence of OBCs, there are often multiple steady-states. For example, a model with a 
zero lower bound on nominal interest rates and Taylor rule monetary policy when away 
from the bound will have an additional “bad” deflationary steady-state in which nominal 
interest rates are zero. The presence of such multiple steady-states means that there can 
be sunspot equilibria which jump between the neighbourhoods of the two steady-states. 
Furthermore, if agents put a positive probability on being in the neighbourhood of the 
“bad” steady-state in future, then since this “bad” steady-state is indeterminate, then by 
a backwards induction argument, there is indeterminacy now. The consequences of 

                                                 
2 A companion paper (Holden 2016), develops computational tools for understanding the same thing. 
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indeterminacy of these kinds have been explored by Schmitt-Grohé and Uribe (2012), 
Mertens and Ravn (2014) and Aruoba, Cuba-Borda, and Schorfheide (2014), amongst 
others. In all cases, the key to generating indeterminacy is that agents’ beliefs about the 
point to which the economy would converge in the absence of future uncertainty are 
switching from one steady-state to the other. 

However, the central banks of most major economies have announced inflation 
targets. Furthermore, it appears that in many countries, the central bank president would 
eventually be fired were their regime characterised by persistent deflation rather than 
the targeted (positive) inflation rate. This suggests that at least in the long-run, agents 
ought to believe that we will return to positive inflation, and they ought to place zero 
probability on paths converging to deflation. If agents’ beliefs satisfy these restrictions, 
then the kinds of multiplicity studied by the authors cited in the previous paragraph are 
ruled out. It is an important question, then, whether there are still multiple equilibria 
even when all agents believe that in the long-run, the economy will return to a particular 
steady-state. 

It is on such equilibria that we focus on in this paper, providing necessary and 
sufficient conditions for the existence of a unique perfect-foresight path, and also 
examining whether it is actually consistent with rationality for agents to believe that the 
economy will eventually return to the given steady state. A restricted class of such 
equilibria were also examined by Brendon, Paustian, and Yates (2015) who examined 
multiplicity in specific, non-standard, models when agents believe that with probability 
one, in one period’s time, they will escape the bound and return to the neighbourhood 
of the “good” steady-state. 

We show that many standard New Keynesian models featuring endogenous state 
variables (e.g. price dispersion), such as those of Fernández-Villaverde et al. (2012) or 
Smets and Wouters (2003; 2007) do not possess such a unique perfect-foresight path, 
meaning that even when agents’ long-run expectations are pinned down, there is still 
multiplicity of equilibria. Thus, the Taylor principle is not sufficient for determinacy in 
the presence of occasionally binding constrains. Indeed, we show that in these models, 
there are some initial states from which the economy has one return path that never hits 
the ZLB, and another that does hit it, so the fact that the ZLB is not violated in a model 
in which it is not imposed does not mean that it would not be hit were it to be imposed. 
However, we show that under a price-targeting regime, there is a unique equilibrium 
path even when we impose the ZLB. Thus, if policy makers were convinced by the 
arguments for the Taylor principle, then, given they face the zero lower bound, they 
ought to consider adopting a price level target. 
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We also provide both necessary and sufficient conditions for the existence of any 
perfect-foresight solutions which return to the original (“good”) steady-state. When no 
such equilibrium exists, agents must switch their beliefs to the other (“bad”) steady-
state, where they will remain in the absence of any way for agents to coordinate back 
on the “good” steady-state. We show that for standard New Keynesian models with 
endogenous state variables, there is a positive probability of ending up in a state of the 
world in which there is no perfect foresight path returning to the “good” steady-state,3 
implying that in the stochastic model, agents must always put positive probability on 
tending to the “bad” steady-state. This in turn implies global indeterminacy in such 
models, by a backwards induction argument. Once again though, price level targeting is 
sufficient to restore determinacy. 

The key idea behind all of our proofs is that an OBC provides a source of endogenous 
news about the future. When a shock hits, driving the economy to the bound in some 
future periods, that tells us that in those future periods, the (lower) bounded variable 
will be higher that it would be otherwise.4 

 

Thinking in terms of endogenous news shocks also provides intuition for the presence 
of multiple equilibria in these models. As an example, consider a New Keynesian model 
with significant real and nominal frictions. If these frictions are large enough, then 

                                                 
3 This has some similarities to the results of Richter and Throckmorton (2014) and Appendix B of Gavin et al. (2015), who show 
numerically that a particular solution algorithm does not converge in certain areas of the state/parameter/guess space for a simple 
NK model. However, our results are theoretical, so whereas Richter and Throckmorton and Gavin et al.’s results may possibly be 
driven by the particular properties of their solution procedure, ours imply true non-existence, at least for perfect foresight, otherwise 
linear models. For example, for the model with Rotemberg (1982) type pricing, and no steady-state distortions, that these authors 
work with, our results imply global existence and uniqueness for the linearized model when the standard Taylor principle is satisfied. 
4 The idea of imposing the zero lower bound by adding news shocks is also present in Holden (2010), Hebden et al. (2011), Holden 
and Paetz (2012) and Bodenstein et al. (2013). News shocks were introduced to the literature by Beaudry and Portier (2006). 
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Figure 1: Self-fulfilling news shocks 
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learning about a future positive shock to nominal interest rates induces a sufficiently 
severe downtown that the Taylor rule calls for much lower rates, even in the period in 
which the shock actually arrives. While positive shocks having negative effects may 
sound somewhat bizarre, in fact this is a relatively common phenomenon in New 
Keynesian models. Then, there will be some magnitude of news shock to nominal 
interest rates today at which the news is of precisely the correct magnitude to bring the 
negative interest rates implied by the Taylor rule up to zero, in that period. A news shock 
of this magnitude thus becomes a self-fulfilling prophecy, as illustrated in Figure 1. In 
models with weaker rigidities, multiple equilibria are still possible if there is some 
combination of future periods such that with appropriate news shocks in each, a similar 
self-fulfilling prophecy occurs. 

Our paper is structured as follows. In the following section, section 2 we present our 
key theoretical results on otherwise linear perfect foresight models. We then discuss the 
application of these results to New Keynesian models in section 3. Section 4 concludes. 
All files needed for the replication of this paper’s numerical results are included in the 
“Examples” directory of the author’s DynareOBC toolkit, 5  which implements an 
algorithm for simulating models with occasionally binding constraints that we discuss 
in a companion paper (Holden 2016). 

2. Theoretical results on occasionally binding constraints in 
otherwise linear models under perfect foresight 

In this section, we present our main theoretical results on existence and uniqueness 
of perfect foresight solutions to models which are linear apart from an occasionally 
binding constraint. We start by defining the problem to be solved, and examining its 
relationship both to the problem without OBCs, and to a related problem with news 
shocks to the bounded variable. Using the news shock representation, we demonstrate 
that solving the model with OBCs is equivalent to solving a linear complementarity 
problem. We then discuss some theoretical background on these problems, before 
presenting the main existence and uniqueness results. 

2.1. Problem set-ups 
We start by describing the problem set-up without bounds. Suppose that for 𝑡𝑡 ∈ ℕ+, 

(i.e. 𝑡𝑡 ∈ ℕ, 𝑡𝑡 > 0), the first order conditions of some model may be represented as: 
�𝐴𝐴̂ + 𝐵̂𝐵 + 𝐶𝐶�̂𝜇̂𝜇 = 𝐴𝐴𝑥̂𝑥𝑡̂𝑡−1 + 𝐵𝐵𝑥𝑥𝑡̂𝑡 + 𝐶𝐶𝔼̂𝔼𝑡𝑡𝑥𝑥𝑡̂𝑡+1 + 𝐷𝐷�𝜀𝜀𝑡𝑡, 

where 𝜇̂𝜇 ∈ ℝ𝑛̂𝑛 and 𝑥𝑥𝑡̂𝑡 ∈ ℝ𝑛̂𝑛, 𝜀𝜀𝑡𝑡 ∈ ℝ𝑚𝑚, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0 for all 𝑡𝑡 ∈ ℕ+, and suppose that 𝑥𝑥0̂ 
is given as an initial condition. Throughout this paper, we will refer to first order 
                                                 
5 These files may be viewed online at https://github.com/tholden/dynareOBC/tree/master/Examples.  

https://github.com/tholden/dynareOBC/tree/master/Examples
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conditions such as these as “the model”, conflating them with the optimisation 
problem(s) which gave rise to them. 

Furthermore, suppose that 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1 , as in an impulse response or perfect 
foresight simulation exercise. Additionally, we assume the existence of a terminal 
condition of the form 𝑥𝑥𝑡̂𝑡 → 𝜇̂𝜇 as 𝑡𝑡 → ∞, coming, for example, from the source model’s 
transversality constraints. 

For 𝑡𝑡 ∈ ℕ+, define 𝑥𝑥𝑡𝑡 ≔ � 𝑥𝑥𝑡̂𝑡
𝜀𝜀𝑡𝑡+1

�, 𝜇𝜇 ≔ �𝜇̂𝜇
0�, 𝐴𝐴 ≔ �𝐴𝐴̂ 𝐷𝐷�

0 0
�, 𝐵𝐵 ≔ �𝐵̂𝐵 0

0 𝐼𝐼
�, 𝐶𝐶 ≔ �𝐶𝐶 ̂ 0

0 0
�, 

then, for 𝑡𝑡 ∈ ℕ+: 
(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1, (1) 

and we have the extended initial condition 𝑥𝑥0 = �𝑥𝑥0̂
𝜀𝜀1

� , and the extended terminal 

condition 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. Expectations have disappeared since there is no uncertainty 
after period 0. Thus, the problem of solving the original model has the same form as 
that given in: 

Problem 1 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 
as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+, equation (1) holds. 

We make the following assumption in all of the following: 

Assumption 1 For any given 𝑥𝑥0 ∈ ℝ𝑛𝑛, Problem 1 has a unique solution, which takes the 
form 𝑥𝑥𝑡𝑡 = (𝐼𝐼 − 𝐹𝐹)𝜇𝜇 + 𝐹𝐹𝑥𝑥𝑡𝑡−1, for 𝑡𝑡 ∈ ℕ+, where 𝐹𝐹 = −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1𝐴𝐴, and where all of 
the eigenvalues of 𝐹𝐹 are weakly inside the unit circle. 

Sims’s (2002) generalisation of the standard Blanchard-Kahn (1980) conditions is 
necessary and sufficient for this. Further, to avoid dealing specially with the knife-edge 
case of exact unit eigenvalues (even if they are constrained to the part of the model that 
is solved forward), in the following we rule it out with the subsequent assumption, which 
is, in any case, a necessary condition for perturbation to produce a consistent 
approximation to a source non-linear model, and which is also necessary for the linear 
model to have a unique steady-state: 

Assumption 2 det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) ≠ 0. 

The combination of Assumption 1 and Assumption 2 imply that all of the eigenvalues 
of 𝐹𝐹 are strictly inside the unit circle. 

We are interested in models featuring occasionally binding constraints. We will 
concentrate on models featuring a single zero lower bound type constraint in their first 
equation, which we treat as defining the first element of 𝑥𝑥𝑡𝑡 . Generalising from this 
special case is straightforward, and is discussed in online appendix D. First, let us write 
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𝑥𝑥1,𝑡𝑡 , 𝐼𝐼1,⋅ , 𝐴𝐴1,⋅ , 𝐵𝐵1,⋅ , 𝐶𝐶1,⋅  for the first row of 𝑥𝑥𝑡𝑡 , 𝐼𝐼  , 𝐴𝐴 , 𝐵𝐵 , 𝐶𝐶  (respectively) and 𝑥𝑥−1,𝑡𝑡 , 𝐼𝐼−1,⋅ , 
𝐴𝐴−1,⋅, 𝐵𝐵−1,⋅, 𝐶𝐶−1,⋅ for the remainders. Likewise, we write 𝐼𝐼⋅,1 for the first column of 𝐼𝐼 , 
and so on. Then, we are interested in the solution to: 

Problem 2 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛  is given. Find 𝑇𝑇 ∈ ℕ  and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛  for 𝑡𝑡 ∈ ℕ+  such 
that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇)�, 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1 + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡 + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1, 

and such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 . 

Note that in this problem we are implicitly ruling out any solutions which get 
permanently stuck at an alternative steady-state, by assuming that the terminal condition 
remains as before. In the monetary policy context, this amounts to assuming that the 
central banks’ inflation target is credible. Since 𝑥𝑥1,𝑡𝑡 → 𝜇𝜇1 as 𝑡𝑡 → ∞, it is without loss 
of generality to assume the existence of a 𝑇𝑇 ∈ ℕ such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 , but this 𝑇𝑇  
will play an important role in the below, so we introduce it now. We continue to assume 
that there is no uncertainty after period 0, so, in this non-linear model, the path of the 
endogenous variables will not necessarily match up with the path of their expectation 
in a richer model in which there was uncertainty after period 0. 

In many models, the occasionally binding constraint comes from the KKT conditions 
of an optimisation problem. We will give in section 2.6 a general procedure for 
converting such conditions into a problem in the form of that Problem 2. The intuition 
is that one can use the model’s equations to find the value the (lower) constrained 
variable would take were there no constraint and were the Lagrange multiplier on the 
constraint equal to zero today. This gives a “shadow” value of the constrained variable, 
and the actual value it takes will be the maximum of the bound and this shadow value. 

We will analyse Problem 2 with the help of solutions to the auxiliary problem: 

Problem 3 Suppose that 𝑇𝑇 ∈ ℕ , 𝑥𝑥0 ∈ ℝ𝑛𝑛  and 𝑦𝑦0 ∈ ℝ𝑇𝑇   is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛, 𝑦𝑦𝑡𝑡 ∈
ℝ𝑇𝑇  for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇, 𝑦𝑦𝑡𝑡 → 0, as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦1,𝑡𝑡−1, 
𝑦𝑦𝑇𝑇,𝑡𝑡 = 0, ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1. 

This may be thought of as a version of Problem 1 with news shocks up to horizon 𝑇𝑇  
added to the first equation. The value of 𝑦𝑦𝑡𝑡,0 gives the news shock that hits in period 𝑡𝑡, 
i.e. 𝑦𝑦1,𝑡𝑡−1 = 𝑦𝑦𝑡𝑡,0 for 𝑡𝑡 ≤ 𝑇𝑇 , and 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇 . 
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2.2. Relationships between the problems 
Since 𝑦𝑦1,𝑡𝑡−1 = 0  for 𝑡𝑡 > 𝑇𝑇  , and using Assumption 1, (𝑥𝑥𝑇𝑇+1 − 𝜇𝜇) = 𝐹𝐹(𝑥𝑥𝑇𝑇 − 𝜇𝜇) , so 

with 𝑡𝑡 = 𝑇𝑇  , defining 𝑠𝑠𝑇𝑇+1 ≔ 0 , (𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) = 𝑠𝑠𝑡𝑡+1 + 𝐹𝐹(𝑥𝑥𝑡𝑡 − 𝜇𝜇) . Proceeding now by 
backwards induction on 𝑡𝑡 , note that 0 = 𝐴𝐴(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝐵𝐵(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶𝐶𝐶(𝑥𝑥𝑡𝑡 − 𝜇𝜇) +
𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0, so: 

(𝑥𝑥𝑡𝑡 − 𝜇𝜇) = −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�𝐴𝐴(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� 
= 𝐹𝐹(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) − (𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0�, 

i.e., if we define: 𝑠𝑠𝑡𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� , then (𝑥𝑥𝑡𝑡 − 𝜇𝜇) = 𝑠𝑠𝑡𝑡 + 𝐹𝐹(𝑥𝑥𝑡𝑡−1 −
𝜇𝜇) . By induction then, this holds for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇} .6  Hence, we have proved the 
following lemma: 

Lemma 1 There is a unique solution to Problem 3 that is linear in 𝑥𝑥0 and 𝑦𝑦0. 

For future reference, let 𝑥𝑥𝑡𝑡
(3,𝑘𝑘) be the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇, 𝑦𝑦0 = 𝐼𝐼⋅,𝑘𝑘 (i.e. 

a vector which is all zeros apart from a 1 in position 𝑘𝑘). Then, by linearity, for arbitrary 
𝑦𝑦0 the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: 

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = � 𝑦𝑦𝑘𝑘,0�𝑥𝑥𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇�

𝑇𝑇

𝑘𝑘=1
. 

Let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  satisfy: 
𝑀𝑀𝑡𝑡,𝑘𝑘 = 𝑥𝑥1,𝑡𝑡

(3,𝑘𝑘) − 𝜇𝜇1, ∀𝑡𝑡, 𝑘𝑘 ∈ {1, . . , 𝑇𝑇}, (2) 
i.e. 𝑀𝑀 horizontally stacks the (column-vector) relative impulse responses to the news 
shocks. Then this result implies that for arbitrary 𝑦𝑦0, the path of the first variable in the 
solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: �𝑥𝑥1,1:𝑇𝑇 �′ = 𝜇𝜇1 + 𝑀𝑀𝑦𝑦0, where 𝑥𝑥1,1:𝑇𝑇  is 
the row vector of the first 𝑇𝑇  values of the first component of 𝑥𝑥𝑡𝑡. Furthermore, for both 
arbitrary 𝑥𝑥0 and 𝑦𝑦0, the path of the first variable in the solution to Problem 3 is given 
by: �𝑥𝑥1,1:𝑇𝑇 �′ = 𝑞𝑞 + 𝑀𝑀𝑦𝑦0, where 𝑞𝑞 ≔ �𝑥𝑥1,1:𝑇𝑇

(1) �
′
 and 𝑥𝑥𝑡𝑡

(1) is the unique solution to Problem 
1, for the given 𝑥𝑥0.7  

Now let 𝑥𝑥𝑡𝑡
(2) be a solution to Problem 2 given an arbitrary 𝑥𝑥0. Since 𝑥𝑥𝑡𝑡

(2) → 𝜇𝜇 as 𝑡𝑡 →
∞, there exists 𝑇𝑇 ′ ∈ ℕ such that for all 𝑡𝑡 > 𝑇𝑇 ′, 𝑥𝑥1,𝑡𝑡

(2) > 0. We assume without loss of 
generality that 𝑇𝑇 ′ ≤ 𝑇𝑇 . We seek to relate the solution to Problem 2 with the solution to 
Problem 3 for an appropriate choice of 𝑦𝑦0. First, for all 𝑡𝑡 ∈ ℕ+, let: 

𝑒𝑒𝑡𝑡 ≔
⎩�⎨
�⎧−�𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇�� if 𝑥𝑥1,𝑡𝑡
(2) = 0

0 if 𝑥𝑥1,𝑡𝑡
(2) > 0

, (3) 

i.e. 𝑒𝑒𝑡𝑡 is the shock that would need to hit the first equation for the positivity constraint 
on 𝑥𝑥1,𝑡𝑡

(2) to be enforced. Note for future reference that by the definition of Problem 2, 

                                                 
6 This representation of the solution to Problem 3 was inspired by that of Anderson (2015). 
7 This representation was also exploited by Holden (2010) and Holden and Paetz (2012). 
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𝑒𝑒𝑡𝑡 ≥ 0 and 𝑥𝑥1,𝑡𝑡
(2)𝑒𝑒𝑡𝑡 = 0, for all 𝑡𝑡 ∈ ℕ+. From this definition, we also have that for all 𝑡𝑡 ∈

ℕ+ , 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1
(2) − 𝜇𝜇� + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡 . Furthermore, if 𝑡𝑡 > 𝑇𝑇  , 

then 𝑡𝑡 > 𝑇𝑇 ′ , and hence 𝑒𝑒𝑡𝑡 = 0 . Hence, by Assumption 1, �𝑥𝑥𝑇𝑇+1
(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇

(2) − 𝜇𝜇� . 
Thus, much as before, with 𝑡𝑡 = 𝑇𝑇 , defining 𝑠𝑠𝑇̃𝑇+1 ≔ 0, �𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇� = 𝑠𝑠𝑡̃𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇�. 

Consequently, 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶𝐶𝐶�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡̃𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡 , so 

�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�𝐶𝐶𝑠𝑠𝑡̃𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, i.e., if we define: 𝑠𝑠𝑡̃𝑡 ≔ −(𝐵𝐵 +
𝐶𝐶𝐶𝐶)−1�𝐶𝐶𝑠𝑠𝑡̃𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡� , then �𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� = 𝑠𝑠𝑡̃𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� . As before, by induction 

this must hold for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}. By comparing the definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠𝑡̃𝑡, and the 
laws of motion of 𝑥𝑥𝑡𝑡 under both problems, we then immediately have that if Problem 3 
is started with 𝑥𝑥0 = 𝑥𝑥0

(2) and  𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ , then 𝑥𝑥𝑡𝑡

(2) solves Problem 3. Conversely, if 𝑥𝑥𝑡𝑡
(2) 

solves Problem 3 for some 𝑦𝑦0, then from the laws of motion of 𝑥𝑥𝑡𝑡 under both problems 
it must be the case that 𝑠𝑠𝑡̃𝑡 = 𝑠𝑠𝑡𝑡 for all 𝑡𝑡 ∈ ℕ, and hence from the definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠𝑡̃𝑡, 
we have that 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇

′ . This has established the following result: 

Lemma 2 For any solution, 𝑥𝑥𝑡𝑡
(2) to Problem 2: 

1) With 𝑒𝑒1:𝑇𝑇   as defined in equation (3) , 𝑒𝑒1:𝑇𝑇 ≥ 0 , 𝑥𝑥1,1:𝑇𝑇
(2) ≥ 0  and 𝑥𝑥1,1:𝑇𝑇

(2) ∘ 𝑒𝑒1:𝑇𝑇 = 0 , 
where ∘ denotes the Hadamard (entry-wise) product. 

2) 𝑥𝑥𝑡𝑡
(2) is also the unique solution to Problem 3 with 𝑥𝑥0 = 𝑥𝑥0

(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

3) If 𝑥𝑥𝑡𝑡
(2) solves Problem 3 with 𝑥𝑥0 = 𝑥𝑥0

(2) and with some 𝑦𝑦0, then 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

However, to use the easy solution to Problem 3 to assist us in solving Problem 2 
requires a slightly stronger result. Suppose that 𝑦𝑦0 ∈ ℝ𝑇𝑇   is such that 𝑦𝑦0 ≥ 0 , 𝑥𝑥1,1:𝑇𝑇

(3) ∘
𝑦𝑦0

′ = 0 and 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, where 𝑥𝑥𝑡𝑡

(3) is the unique solution to Problem 3 when 
started at 𝑥𝑥0, 𝑦𝑦0. We would like to prove that in this case 𝑥𝑥𝑡𝑡

(3) must also be a solution to 
Problem 2. I.e., we must prove that for all 𝑡𝑡 ∈ ℕ+: 
𝑥𝑥1,𝑡𝑡

(3) = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇�� , (4) 

�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1
(3) + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡

(3) + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1
(3) . 

By the definition of Problem 3, the latter equation must hold with equality, so there is 
nothing to prove there. Hence we just need to prove that equation (4) holds for all 𝑡𝑡 ∈
ℕ+ . So let 𝑡𝑡 ∈ ℕ+ . Now, if 𝑥𝑥1,𝑡𝑡

(3) > 0 , then 𝑦𝑦𝑡𝑡,0 = 0 , by the complementary slackness 
type condition (𝑥𝑥1,1:𝑇𝑇

(3) ∘ 𝑦𝑦0
′ = 0). Thus, from the definition of Problem 3: 

𝑥𝑥1,𝑡𝑡
(3) = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇� 
= max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇��, 
as required. The only remaining case is that 𝑥𝑥1,𝑡𝑡

(3) = 0 (since 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, by 

assumption), which implies that: 
𝑥𝑥1,𝑡𝑡

(3) = 0 = 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝐵𝐵1,⋅(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + 𝑦𝑦𝑡𝑡,0 
= 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + 𝑦𝑦𝑡𝑡,0, 
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by the definition of Problem 3. Thus: 
𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) = −𝑦𝑦𝑡𝑡,0 ≤ 0, 

where the inequality is an immediate consequence of another of our assumptions. 
Consequently, equation (4) holds in this case too. Together with Lemma 1, Lemma 2, 
and our representation of the solution of Problem 3, this completes the proof of the 
following proposition: 

Proposition 1 The following hold: 
1) Let 𝑥𝑥𝑡𝑡

(3) be the unique solution to Problem 3 when initialized with some 𝑥𝑥0, 𝑦𝑦0. Then 
𝑥𝑥𝑡𝑡

(3) is a solution to Problem 2 when initialized with 𝑥𝑥0 if and only if 𝑦𝑦0 ≥ 0, 𝑦𝑦0 ∘
(𝑞𝑞 + 𝑀𝑀𝑦𝑦0) = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ with 𝑡𝑡 > 𝑇𝑇 . 
2) Let 𝑥𝑥𝑡𝑡

(2) be any solution to Problem 2 when initialized with 𝑥𝑥0. Then there exists a 
𝑦𝑦0 ∈ ℝ𝑇𝑇   such that 𝑦𝑦0 ≥ 0 , 𝑦𝑦0 ∘ (𝑞𝑞 + 𝑀𝑀𝑦𝑦0) = 0 , 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 , such that 𝑥𝑥𝑡𝑡

(2)  is the 
unique solution to Problem 3 when initialized with 𝑥𝑥0, 𝑦𝑦0. 

2.3. The linear complementarity representation 
Proposition 1 establishes that providing we initially choose 𝑇𝑇  sufficiently high, to find 

a solution to Problem 2, it is sufficient to solve the following problem instead: 

Problem 4 Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇   and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   are given. Find 𝑦𝑦 ∈ ℝ𝑇𝑇   such that 𝑦𝑦 ≥ 0 , 
𝑦𝑦 ∘ (𝑞𝑞 + 𝑀𝑀𝑀𝑀) = 0 and 𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0. We call this the linear complementarity problem 
(LCP) (𝑞𝑞, 𝑀𝑀). (Cottle 2009) 

These problems have been extensively studied, and so we can import results on the 
properties of LCPs to derive results on the properties of solutions to models with OBCs.  

All of the results in the mathematical literature rest on properties of the matrix 𝑀𝑀, 
thus we would like to establish if the structure of our particular 𝑀𝑀 implies it has any 
special properties. Unfortunately, we prove the following result in this paper’s 
companion paper (Holden 2016), which implies that 𝑀𝑀 has no general properties: 

Proposition 2 For any matrix ℳ ∈ ℝ𝑇𝑇×𝑇𝑇 , there exists a model in the form of Problem 
2 with a number of state variables given by a quadratic in 𝑇𝑇 , such that 𝑀𝑀 = ℳ for that 
model, where 𝑀𝑀 is defined as in equation (2), and such that for all 𝓆𝓆 ∈ ℝ𝑇𝑇 , there exists 
an initial state for which 𝑞𝑞 = 𝓆𝓆 , where 𝑞𝑞  is the path of the bounded variable when 
constraints are ignored. (Holden 2016) 

We now introduce some definitions of matrix properties that are necessary for the 
statement of our key existence and uniqueness results. The ultimate properties of the 
solutions to the OBC model are determined by which of these matrix properties 𝑀𝑀 
possesses. In each case, we give the definitions in a constructive form which makes 
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clear both how the property might be verified computationally, and the links between 
definitions. These are not necessarily in the form which is standard in the original 
literature, however. For both the original definitions, and the proofs of equivalence 
between the ones below and the originals, see Cottle, Pang, and Stone (2009a) and Xu 
(1993) (for the characterisation of sufficient models). 

Definition 1 (Principal sub-matrix, Principal minor) For a matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  , the 
principal sub-matrices of 𝑀𝑀 are the matrices: 

��𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆
�𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆�, 

i.e. the principal sub-matrices of 𝑀𝑀  are formed by deleting the same rows and 
columns. The principal minors of 𝑀𝑀 are the collection of values: 

�det ��𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆
� �𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆�, 

i.e. the principal minors of 𝑀𝑀 are the determinants of the principal sub-matrices of 𝑀𝑀. 

Definition 2 (P(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called a P-matrix (P0-matrix) if the 
principal minors of 𝑀𝑀 are all strictly (weakly) positive. Note: for symmetric 𝑀𝑀, 𝑀𝑀 is a 
P(0)-matrix if and only if all of its eigenvalues are strictly (weakly) positive. 

Definition 3 (General positive (semi-)definite) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called general 
positive (semi-)definite if 𝑀𝑀 + 𝑀𝑀′ is a P-matrix (P0-matrix). If 𝑀𝑀 is symmetric, then, 
𝑀𝑀 is general positive (semi-)definite if and only if it is positive (semi-)definite. 

Definition 4 (Sufficient matrices) Let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 . 𝑀𝑀 is called column sufficient if 𝑀𝑀 
is a P0-matrix, and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 of 𝑀𝑀, with zero 

determinant, and for each proper principal sub-matrix �𝑊𝑊𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅
  of 𝑊𝑊   (𝑅𝑅 < 𝑆𝑆 ), 

with zero determinant, the columns of �𝑊𝑊𝑖𝑖,𝑗𝑗� 𝑖𝑖=1,…,𝑆𝑆
𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅

 do not form a basis for the column 

space of 𝑊𝑊  . 8  𝑀𝑀  is called row sufficient if 𝑀𝑀′  is column sufficient. 𝑀𝑀  is called 
sufficient if it is column sufficient and row sufficient.  

Definition 5 (S(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called an S-matrix (S0-matrix) if 
there exists 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 > 0 and 𝑀𝑀𝑀𝑀 ≫ 0 (𝑀𝑀𝑀𝑀 ≥ 0). 9 

Definition 6 ((Strictly) Semi-monotone) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called (strictly) semi-
monotone if each of its principal sub-matrices is an S0-matrix (S-matrix).  

                                                 
8 This may be checked via the singular value decomposition. 
9  These condition may be rewritten as sup�𝜍𝜍 ∈ ℝ�∃𝑦𝑦 ≥ 0 s.t. ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, �𝑀𝑀𝑀𝑀�𝑡𝑡 ≥ 𝜍𝜍 ∧ 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , and 
sup�∑ 𝑦𝑦𝑡𝑡

𝑇𝑇
𝑡𝑡=1 �𝑦𝑦 ≥ 0, 𝑀𝑀𝑀𝑀 ≥ 0 ∧ ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , respectively. As linear-programming problems, these may be 

verified in time polynomial in 𝑇𝑇  using the methods described in e.g. Roos, Terlaky, and Vial (2006). Alternatively, by Ville’s 
theorem of the alternative (Cottle, Pang, and Stone 2009b), 𝑀𝑀 is not an S0-matrix if and only if −𝑀𝑀′ is an S-matrix. 
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Definition 7 ((Strictly) Copositive) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called (strictly) copositive 
if 𝑀𝑀 + 𝑀𝑀′ is (strictly) semi-monotone.10 

Cottle, Pang, and Stone (2009a) note the following relationships between these classes 
(amongst others): 

Lemma 3 The following hold: 
1) All general positive semi-definite matrices are copositive and sufficient. 
2) P0 includes skew-symmetric matrices, general positive semi-definite matrices, 

sufficient matrices and P-matrices. 
3) All P0-matrices, and all copositive matrices are semi-monotone, and all P-matrices, 

and all strictly copositive matrices are strictly semi-monotone (and hence also S-
matrices). 

Additionally, from considering the 1 × 1  principal sub-matrices of 𝑀𝑀 , we have the 
following restrictions on the diagonal of 𝑀𝑀: 

Lemma 4 All general positive semi-definite, semi-monotone, sufficient, P0 and 
copositive matrices have non-negative diagonals, and all general positive definite, 
strictly semi-monotone, P and strictly copositive matrices have positive diagonals. 

For many macroeconomic models, this simple condition is sufficient to rule out 
membership of these matrix classes, as medium-scale DSGE models11  with a ZLB 
frequently have negative elements on the diagonal of their 𝑀𝑀 matrix, when 𝑇𝑇  is large 
enough. Thus, following the intuition of Figure 1, such models will satisfy the 
conditions to have multiple equilibria, though they will not be the only such models. 

Unfortunately, for all of these matrix classes except the classes of general positive 
(semi-)definite matrices, and S(0)-matrices, no algorithm which runs in an amount of 
time that is polynomial in 𝑇𝑇  is known, thus verifying class membership may not be 
feasible with large 𝑇𝑇 . However, disproving class membership only requires finding one 
principal sub-matrix which fails to have the required property, and for this, starting with 
the 1 × 1  principal sub-matrices (e.g. the diagonal), then considering the 2 × 2  ones 
(etc.) is often a good strategy.12 

A common intuition is that in models without state variables, 𝑀𝑀 must be both a P 
matrix, and an S matrix. In fact, this is not true. Indeed, there are even purely static 

                                                 
10 Väliaho (1986) contains an alternative characterisation which avoids solving any linear programming problems. 
11 This applies, for example, to the Smets and Wouters (2003) model, as we will show in section 3.5. 
12 The facts that all of the eigenvalues of a 𝑇𝑇 × 𝑇𝑇  P-matrix have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋

𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋
𝑇𝑇 �, and all of the 

eigenvalues of a 𝑇𝑇 × 𝑇𝑇  P0-matrix have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋
𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋

𝑇𝑇 � (Fang 1989) may also assist in ruling 
out these matrix classes. 
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models for which 𝑀𝑀 is not in either of these classes. For example, in online appendix 
A, we construct a purely static model for which 𝑀𝑀1:∞,1:∞ = −𝐼𝐼∞×∞, which is neither a 
P-matrix, nor an S-matrix, for any 𝑇𝑇 . 

2.4. Existence results 
We start by considering necessary or sufficient conditions for the existence of a 

solution to a model with occasionally binding constraints. Ideally, we would like the 
solution to exist for any possible path the bounded variable might have taken in the 
future were there no OBC, i.e. for any possible 𝑞𝑞. To see this, note that under a perfect 
foresight exercise we are ignoring the fact that shocks might hit the economy in future. 
More properly, we ought to integrate over future uncertainty, as in the stochastic 
extended path approach of Adjemian and Juillard (2013). A crude way to do this would 
just be to draw lots of samples of future shocks for periods 1, … , 𝑆𝑆, and average over 
these draws. However, in a linear model with shocks with unbounded support, providing 
at least one shock has an impact on a given variable, the distribution of future paths of 
that variable has positive support over the entirety of ℝ𝑆𝑆. Thus, ideally we would like 
𝑀𝑀 to be such that for any 𝑞𝑞, the linear complementarity problem (𝑞𝑞, 𝑀𝑀) has a solution. 

Definition 8 (Feasible LCP) Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇   and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   are given. The LCP 
corresponding to 𝑀𝑀 and 𝑞𝑞 is called feasible if there exists 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 ≥ 0 and 
𝑞𝑞 + 𝑀𝑀𝑀𝑀 ≥ 0. 

By construction, if an LCP (𝑞𝑞, 𝑀𝑀) has a solution, then it is feasible, i.e. being feasible 
is a necessary condition for existence. Checking feasibility is straightforward for any 
particular (𝑞𝑞, 𝑀𝑀), since to find a feasible solution we just need to solve a standard linear 
programming problem, which is possible in an amount of time that is polynomial in 𝑇𝑇 . 

Note that if the LCP (𝑞𝑞, 𝑀𝑀) is not feasible, then for any 𝑞𝑞 ̂ ≤ 𝑞𝑞, if 𝑦𝑦 ≥ 0, then 𝑞𝑞 ̂+ 𝑀𝑀𝑀𝑀 ≤
𝑞𝑞 + 𝑀𝑀𝑀𝑀 < 0  since (𝑞𝑞, 𝑀𝑀)  is not feasible, so the LCP (𝑞𝑞,̂ 𝑀𝑀)  is also not feasible. 
Consequently, if there are any 𝑞𝑞  for which the LCP is non-feasible, then there is a 
positive measure of such 𝑞𝑞. Thus, in a model with uncertainty, if there are some 𝑞𝑞 for 
which the model has no solution satisfying the terminal condition, even with arbitrarily 
large 𝑇𝑇 , then the model will have no solution satisfying the terminal condition with 
positive probability. This in turn means that it is not consistent with rationality for agents 
to believe that our terminal condition is satisfied with certainty, so they would have to 
place some positive probability on getting stuck in an alternative steady-state. 
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The following proposition gives an easily verified necessary condition for the global 
existence of a solution to the model with occasionally binding constraints, given some 
fixed horizon 𝑇𝑇 : 

Proposition 3 The LCP (𝑞𝑞, 𝑀𝑀) is feasible for all 𝑞𝑞 ∈ ℝ𝑇𝑇  if and only if 𝑀𝑀 is an S-matrix. 
(Cottle, Pang, and Stone 2009a) 13 

Of course, it may be the case that the 𝑀𝑀 matrix is only an S-matrix when 𝑇𝑇  is very 
large, so we must be careful in using this condition to imply non-existence of a solution. 
Furthermore, it may be the case that although there exists some 𝑦𝑦 ∈ ℝ𝑇𝑇  with 𝑦𝑦 ≥ 0 such 
that 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 𝑦𝑦 ≫ 0, where we are indexing the 𝑀𝑀 matrix by its size for clarity, for any 
such 𝑦𝑦, inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 < 0, so for some 𝑞𝑞 ∈ ℝℕ+, the infinite LCP �𝑞𝑞, 𝑀𝑀1:∞,1:∞� is not 

feasible under the additional restriction that 𝑦𝑦𝑡𝑡 = 0 for 𝑡𝑡 > 𝑇𝑇 . Strictly, it is this infinite 
LCP which we ought to be solving, subject to the additional constraint that 𝑦𝑦 has only 
finitely many non-zero elements, as implied by our terminal condition. 

By Proposition 3, this infinite problem is feasible if and only if: 
𝜍𝜍 ≔ sup

𝑦𝑦∈[0,1]ℕ+

∃𝑇𝑇∈ℕ s.t. ∀𝑡𝑡>𝑇𝑇,𝑦𝑦𝑡𝑡=0

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0. 

Consequently, if 𝜍𝜍 > 0  then for every 𝑞𝑞 ∈ ℝℕ+ , for sufficiently large 𝑇𝑇  , the finite 
problem �𝑞𝑞1:𝑇𝑇 , 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 � will be feasible, which is a sufficient condition for solvability. 
In order to evaluate this limit, we first need to derive constructive bounds on the 𝑀𝑀 
matrix for large 𝑇𝑇 . We do this in the online appendix B, where we prove that the rows 
and columns of 𝑀𝑀  are converging to 0  (with constructive bounds), and that the 𝑘𝑘  th 
diagonal of the 𝑀𝑀  matrix is converging to the value 𝑑𝑑1,𝑘𝑘 , to be defined (again with 
constructive bounds), where diagonals are indexed such that the principal diagonal is 
index 0 , and indices increase as one moves up and to the right in the 𝑀𝑀  matrix. To 
explain the origins of 𝑑𝑑1,𝑘𝑘 we note the following lemma proved in online appendix B: 

Lemma 5 The (time-reversed) difference equation 𝐴𝐴𝑑𝑑𝑘̂𝑘+1 + 𝐵𝐵𝑑𝑑𝑘̂𝑘 + 𝐶𝐶𝑑𝑑𝑘̂𝑘−1 = 0 for all 𝑘𝑘 ∈
ℕ+ has a unique solution satisfying the terminal condition 𝑑𝑑𝑘̂𝑘 → 0 as 𝑘𝑘 → ∞, given by 
𝑑𝑑𝑘̂𝑘 = 𝐻𝐻𝑑𝑑𝑘̂𝑘−1, for all 𝑘𝑘 ∈ ℕ+, for some 𝐻𝐻 with eigenvalues in the unit circle. 

Then, we define 𝑑𝑑0 ≔ −(𝐴𝐴𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1𝐼𝐼⋅,1, 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1, for all 𝑘𝑘 ∈ ℕ+, and 𝑑𝑑−𝑡𝑡 =
𝐹𝐹𝑑𝑑−(𝑡𝑡−1), for all 𝑡𝑡 ∈ ℕ+, so 𝑑𝑑𝑘𝑘 follows the time reversed difference equation for positive 
indices, and the original difference equation for negative indices. This is opposite to 

                                                 
13 Most of the results on LCPs in both this and the following section are restatements of (assorted) results contained in Cottle, Pang, 
and Stone (2009a) and Väliaho (1986) (for the characterisation of “copositive-plus” matrices), and the reader is referred to those 
works for proofs and further references. 
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what one might perhaps expect since time is increasing as one descends the rows of 𝑀𝑀, 
but diagonal indices are decreasing as one descends in 𝑀𝑀. 

Using the resulting bounds on 𝑀𝑀, we can construct upper and lower bounds on 𝜍𝜍, 
which are described in the following propositions, also proven in online appendix B: 

Proposition 4 There exists 𝜍𝜍𝑇𝑇 , 𝜍𝜍𝑇𝑇 ≥ 0, defined in the online appendix B, computable 
in time polynomial in 𝑇𝑇 , such that 𝜍𝜍𝑇𝑇 ≤ 𝜍𝜍 ≤ 𝜍𝜍𝑇𝑇 , and �𝜍𝜍𝑇𝑇 − 𝜍𝜍𝑇𝑇 � → 0 as 𝑇𝑇 → ∞. 

These conditions give simple tests for feasibility or non-feasibility with sufficiently 
large 𝑇𝑇 .  

 We now turn to sufficient conditions for the existence of a solution for some finite 𝑇𝑇 . 

Proposition 5 The LCP (𝑞𝑞, 𝑀𝑀) is solvable if it is feasible and, either: 
1. 𝑀𝑀 is row-sufficient, or, 
2. 𝑀𝑀  is copositive and for all non-singular principal sub-matrices 𝑊𝑊   of 𝑀𝑀 , all non-

negative columns of 𝑊𝑊 −1 possess a non-zero diagonal element. 
(Cottle, Pang, and Stone 2009a; Väliaho 1986) 

If either condition 1 or condition 2 of Proposition 5 is satisfied, then to check existence 
for any particular 𝑞𝑞, we only need to solve a linear programming problem to see if a 
solution exists for a particular 𝑞𝑞. As this may be substantially faster than solving the 
LCP, this may be helpful in practice. 

Proposition 6 The LCP (𝑞𝑞, 𝑀𝑀) is solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if at least one of the following 
conditions holds: 
1. 𝑀𝑀 is an S-matrix, and either condition 1 or condition 2 of Proposition 5 are satisfied. 
2. 𝑀𝑀 is copositive with non-zero principal minors. 
3. 𝑀𝑀 is a P-matrix, a strictly copositive matrix or a strictly semi-monotone matrix. 
(Cottle, Pang, and Stone 2009a) 

If condition 1, 2 or 3 of Proposition 6 is satisfied, then we know that the LCP will 
always have a solution. Therefore, for any path of the bounded variable in the absence 
of the bound, we will also be able to solve the model when the bound is imposed. 
Monetary policy makers should always choose a policy rule that produces a model that 
satisfies one of these three conditions, if they can, since otherwise there is a positive 
probability that only solutions converging to the “bad” steady-state will exist in some 
state of the world.  

Ideally, we might have liked conditions for the existence of a solution that are both 
necessary and sufficient, but unfortunately at present no such conditions exist in full 



Page 16 of 30 

generality. However, in the special case of 𝑀𝑀 matrices with nonnegative entries, we have 
the following result: 

Proposition 7 If 𝑀𝑀 is a matrix with nonnegative entries, then the LCP (𝑞𝑞, 𝑀𝑀) is solvable 
for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if and only if 𝑀𝑀 has a strictly positive diagonal. (Cottle, Pang, and Stone 
2009a) 

2.5. Uniqueness results 
While no fully general necessary and sufficient conditions have been derived for 

existence, such conditions are available for uniqueness, in particular: 

Proposition 8 The LCP (𝑞𝑞, 𝑀𝑀) has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if and only if 𝑀𝑀 is 
a P-matrix. If 𝑀𝑀 is not a P-matrix, then the LCP (𝑞𝑞, 𝑀𝑀) has multiple solutions for some 
𝑞𝑞. (Samelson, Thrall, and Wesler 1958; Cottle, Pang, and Stone 2009a) 

This proposition is the equivalent for models with OBCs of the key proposition of 
Blanchard and Kahn (1980). By testing whether our matrix 𝑀𝑀 is a P-matrix we can 
immediately determine if the model possesses a unique solution in any state of the 
world, and for any sequence of future shocks, for a fixed 𝑇𝑇  . In our experience, this 
condition is satisfied in efficient models, such as models of irreversible investment, as 
one would expect, but is not generally satisfied in medium-scale New-Keynesian 
models with a ZLB on nominal interest rates. Given that if 𝑀𝑀 is a P-matrix, so too are 
all its principal sub-matrices, if we see that 𝑀𝑀 is not a P-matrix for some 𝑇𝑇 , then we 
know that with larger 𝑇𝑇  it would also not be a P-matrix. Thus, if for some 𝑇𝑇 , 𝑀𝑀 is not a 
P-matrix, then we know that the model does not have a unique solution, even for 
arbitrarily large 𝑇𝑇  . Alternatively, we can prove that with large 𝑇𝑇   some 𝑀𝑀  is not a P-
matrix by using the analytic formula for the limit of its diagonal given in the previous 
section, i.e. 𝑑𝑑0,1 = −𝐼𝐼1,⋅(𝐴𝐴𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1𝐼𝐼⋅,1. If this value is negative, then we know 
that with sufficiently large 𝑇𝑇 , 𝑀𝑀 will not be a P-matrix. 

Since some classes of models almost never possess a unique solution when at the zero 
lower bound, we might reasonably require a lesser condition, namely that at least when 
the solution to the model without a bound is a solution to the model with the bound, 
then it ought to be the unique solution. This is equivalent to requiring that when 𝑞𝑞 is 
non-negative, the LCP (𝑞𝑞, 𝑀𝑀) has a unique solution. Conditions for this are given in the 
following proposition: 

Proposition 9 The LCP (𝑞𝑞, 𝑀𝑀) has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇  with 𝑞𝑞 ≫ 0 (𝑞𝑞 ≥ 0) 
if and only if 𝑀𝑀 is (strictly) semi-monotone. (Cottle, Pang, and Stone 2009a) 
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Hence, by verifying that 𝑀𝑀 is (strictly) semi-monotone, we can reassure ourselves that 
merely introducing the bound will not change the solution away from the bound. When 
this condition is violated, even when the economy is a long way from the bound, there 
may be solutions which jump to the bound. Again, since principal sub-matrices of 
(strictly) semi-monotone are (strictly) semi-monotone, a failure of (strict) semi-
monotonicity for some 𝑇𝑇  implies a failure for all larger 𝑇𝑇 . Furthermore, if 𝑑𝑑0,1 < 0 then 
again for sufficiently large 𝑇𝑇 , 𝑀𝑀 cannot be semi-monotone. 

Where there are multiple solutions, we might like to be able to select one via some 
objective function. This is particularly tractable when either the number of solutions is 
finite, or the solution set is convex. Conditions for this are given in online appendix C. 

2.6. Results from dynamic programming 
Alternative existence and uniqueness results for the infinite 𝑇𝑇   problem can be 

established via dynamic programming methods, under the assumption that Problem 2 
comes from the first order conditions solution of a social planner problem. These have 
the advantage that their conditions are potentially much easier to evaluate, though they 
also have somewhat limited applicability. We focus here on uniqueness results, since 
these are generally of greater interest. 

Suppose that the social planner in some economy solves the following problem: 

Problem 5 Suppose 𝜇𝜇 ∈ ℝ𝑛𝑛, Ψ(0) ∈ ℝ𝑐𝑐×1 and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛 are given, where 𝑐𝑐 ∈ ℕ. 
Define Γ�: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛) (where ℙ denotes the power-set operator) by: 

Γ�(𝑥𝑥) = �𝑧𝑧 ∈ ℝ𝑛𝑛�  0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�� , (5) 

for all 𝑥𝑥 ∈ ℝ𝑛𝑛. (Note: 𝛤𝛤�(𝑥𝑥) will give the set of feasible values for next period’s state if 
the current state is 𝑥𝑥. Equality constraints may be included by including an identical 
lower bound and upper bound.) Define: 

𝑋𝑋̃ ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ�(𝑥𝑥) ≠ ∅�, (6) 
and suppose without loss of generality that for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ�(𝑥𝑥) ∩ 𝑋𝑋̃ = Γ�(𝑥𝑥). (Note: this 
means that the linear inequalities bounding 𝑋𝑋̃  are already included in those in the 
definition of 𝛤𝛤�(𝑥𝑥). It is without loss of generality as the planner will never choose an 
𝑥𝑥 ̃ ∈ 𝛤𝛤�(𝑥𝑥) such that 𝛤𝛤�(𝑥𝑥)̃ = ∅.) Further define ℱ�: 𝑋𝑋̃ × 𝑋𝑋̃ → ℝ by: 

ℱ�(𝑥𝑥, 𝑧𝑧) = 𝑢𝑢(0) + 𝑢𝑢(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + 1

2 �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
𝑢𝑢(̃2) �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� , (7) 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋̃ , where 𝑢𝑢(0) ∈ ℝ , 𝑢𝑢(1) ∈ ℝ1×2𝑛𝑛  and 𝑢𝑢(̃2) = 𝑢𝑢(̃2)′ ∈ ℝ2𝑛𝑛×2𝑛𝑛  are given. 
Finally, suppose 𝑥𝑥0 ∈ 𝑋𝑋̃ is given and 𝛽𝛽 ∈ (0,1), and choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
(8) 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ�(𝑥𝑥𝑡𝑡−1). 
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To ensure the problem is well behaved, we make the following assumption: 

Assumption 3 𝑢𝑢(̃2) is negative-definite. 

In online appendix E, we establish the following (unsurprising) result: 

Proposition 10 If either 𝑋𝑋̃ is compact, or, Γ�(𝑥𝑥) is compact valued and 𝑥𝑥 ∈ Γ�(𝑥𝑥) for all 
𝑥𝑥 ∈ 𝑋𝑋̃, then for all 𝑥𝑥0 ∈ 𝑋𝑋̃, there is a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=0

∞  which solves Problem 5. 

We wish to use this result to establish the uniqueness of the solution to the first order 
conditions. The Lagrangian for our problem is given by: 

� 𝛽𝛽𝑡𝑡−1 �ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆Ψ,𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ���

∞

𝑡𝑡=1
, (9) 

for some KKT-multipliers 𝜆𝜆𝑡𝑡 ∈ ℝ𝑐𝑐  for all 𝑡𝑡 ∈ ℕ+ . Taking the first order conditions 
leads to the following necessary KKT conditions, for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1) + 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)� , (10) 

0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � , 0 ≤ 𝜆𝜆𝑡𝑡, 0 = 𝜆𝜆𝑡𝑡 ∘ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� , (11) 

where subscripts 1 and 2 refer to blocks of rows or columns of length 𝑛𝑛. Additionally, 
for 𝜇𝜇 to be the steady-state of 𝑥𝑥𝑡𝑡 and 𝜆𝜆����� to be the steady-state of 𝜆𝜆𝑡𝑡, we require:  

0 = 𝑢𝑢⋅,2
(1) + 𝜆𝜆�����′Ψ⋅,2

(1) + 𝛽𝛽�𝑢𝑢⋅,1
(1) + 𝜆𝜆�����′Ψ⋅,1

(1)�, (12) 

0 ≤ Ψ(0), 0 ≤ 𝜆𝜆�����, 0 = 𝜆𝜆����� ∘ Ψ(0). (13) 
In online appendix F we prove the following result: 

Proposition 11 Suppose that for all 𝑡𝑡 ∈ ℕ , (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   and (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞   satisfy the KKT 
conditions given in equations (10)  and (11) , and that as 𝑡𝑡 → ∞ , 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆����� , 
where 𝜇𝜇  and 𝜆𝜆  satisfy the steady-state KKT conditions given in equations (12)  and 
(13). Then (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  solves Problem 5. If, further, either condition of Proposition 10 is 
satisfied, then (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  is the unique solution to Problem 5, and there can be no other 
solutions to the KKT conditions given in equations (10)  and (11)  satisfying 𝑥𝑥𝑡𝑡 → 𝜇𝜇 
and 𝜆𝜆𝑡𝑡 → 𝜆𝜆����� as 𝑡𝑡 → ∞. 

Now, it is possible to convert the KKT conditions given in equations (10) and (11) into 
a problem in the form of the multiple-bound generalisation of Problem 2 quite generally. 
To see this, first note that we may rewrite equation (10) as: 

0 = 𝑢𝑢⋅,2
(1)′

+ 𝑢𝑢2̃,1
(2)(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝑢𝑢2̃,2

(2)(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + Ψ⋅,2
(1)′

𝜆𝜆𝑡𝑡

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,1
(2)(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝑢𝑢1̃,2

(2)(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + Ψ⋅,1
(1)′

𝜆𝜆𝑡𝑡+1�. 
Now, 𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1,1
(2)  is negative definite, hence it is valid to define: 

𝒱𝒱 ≔ Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
. 
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Then, equation (9) implies that: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

= Ψ(0) + �Ψ⋅,1
(1) − 𝒱𝒱𝑢𝑢2̃,1

(2)�(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) − 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

−Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
𝜆𝜆𝑡𝑡.

(14) 

Moreover, equation (11)  implies that if the 𝑘𝑘  th element of Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �  is 

strictly positive, then the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is zero, so: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � = max{0, 𝑧𝑧𝑡𝑡} , (15) 

where: 
𝑧𝑧𝑡𝑡 ≔ Ψ(0) + �Ψ⋅,1

(1) − 𝒱𝒱𝑢𝑢2̃,1
(2)�(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇)

− 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

− �Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
+ 𝒲𝒲� 𝜆𝜆𝑡𝑡, 

and 𝒲𝒲 ∈ ℝ𝑐𝑐×𝑐𝑐 is an arbitrary, strictly positive diagonal matrix. A natural choice is: 
𝒲𝒲 ≔ − diag diag �Ψ⋅,2

(1)�𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2)�
−1

Ψ⋅,2
(1)′

�, 

providing this is strictly positive (it is weakly positive at least as 𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2)  is negative 
definite), where the diag operator maps matrices to a vector containing their diagonal, 
and maps vectors to a matrix with the given vector on the diagonal, and zeros elsewhere. 

We claim that we may replace equation (11) with equation (15) without changing the 
model. We have already shown that equation (11)  implies equation (15) , so we just 
have to prove the converse. We continue to suppose equation (9) holds, and thus, so too 
does equation (14). Then, from subtracting equation (14) from equation (15), we have 
that: 

𝒲𝒲𝜆𝜆𝑡𝑡 = max{−𝑧𝑧𝑡𝑡, 0}. 
Hence, as 𝒲𝒲 is a strictly positive diagonal matrix, and the right hand side is weakly 
positive, 𝜆𝜆𝑡𝑡 ≥ 0. Furthermore, the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is non-negative if and only if the 
𝑘𝑘th element of 𝑧𝑧𝑡𝑡 is non-positive (as 𝒲𝒲 is a strictly positive diagonal matrix), which in 
turn holds if and only if the 𝑘𝑘th element of Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � is equal to zero, by 

equation (15). Thus equation (11) is satisfied.  
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Combined with our previous results, this gives the following proposition: 

Proposition 12 Suppose we are given a problem in the form of Problem 5. Then, the 
KKT conditions of that problem may be placed into the form of the multiple-bound 
generalisation of Problem 2. Let �𝑞𝑞𝑥𝑥0

, 𝑀𝑀�  be the infinite LCP corresponding to this 
representation, given initial state 𝑥𝑥0 ∈ 𝑋𝑋̃. Then, if 𝑦𝑦 is a solution to the LCP, 𝑞𝑞𝑥𝑥0

+ 𝑀𝑀𝑀𝑀 
gives the stacked paths of the bounded variables in a solution to Problem 5. If, further, 
either condition of Proposition 10 is satisfied, then this LCP has a unique solution for 
all 𝑥𝑥0 ∈ 𝑋𝑋̃, which gives the unique solution to Problem 5, and, for sufficiently large 𝑇𝑇 ∗, 
the finite LCP �𝑞𝑞𝑥𝑥0

(𝑇𝑇∗), 𝑀𝑀(𝑇𝑇∗)� has a unique solution 𝑦𝑦(𝑇𝑇∗) for all 𝑥𝑥0 ∈ 𝑋𝑋̃, where 𝑞𝑞𝑥𝑥0
(𝑇𝑇∗) +

𝑀𝑀(𝑇𝑇∗)𝑦𝑦(𝑇𝑇∗) gives the first 𝑇𝑇 ∗ periods of the stacked paths of the bounded variables in a 
solution to Problem 5. 

This proposition provides some evidence that the LCP will have a unique solution when 
it is generated from a dynamic programming problem with a unique solution. In online 
appendix G, we derive similar results for models with more general constraints and 
objective functions. The proof of this proposition also showed how one can convert 
KKT conditions into equations of the form handled by our methods. 

3. Applications to New Keynesian models 

Brendon, Paustian, and Yates (2015) (henceforth: BPY) consider multiple equilibria 
in a simple New Keynesian (NK) model with an output growth rate term in the Taylor 
rule. They show that with sufficiently large reaction to the growth rate, there can be 
multiple equilibria today, even when the policy rule used to form tomorrow’s 
expectations is held fixed. This is equivalent to the existence of multiple equilibria even 
when 𝑇𝑇 = 1. In the first subsection here, we give an alternative analytic proof of this 
using our results, and discuss the generalisation to higher 𝑇𝑇  . We go on to consider 
variants of the BPY model with persistence in shadow nominal interest rates, or price 
targeting, and show that price targeting produces determinacy. 

However, we do not want to give the impression that multiplicity and non-existence 
are only caused by the central bank responding to the growth rate, or that they are only 
a problem in carefully constructed theoretical examples. In subsection 3.4, we show that 
a standard NK model with positive steady-state inflation and a ZLB possesses multiple 
equilibria in some states, and no solutions in others, even with an entirely standard 
Taylor rule. We also show that here too price level targeting is sufficient to restore 
determinacy. Finally, in the last sub-section we show that these conclusions also carry 
through to the posterior-modes of the Smets and Wouters (2003; 2007) models. 
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3.1. The simple Brendon, Paustian, and Yates (2015) (BPY) model 
The equations of the simple Brendon, Paustian, and Yates (2015) model are as 

follows: 
𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 − 1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1�, 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

where 𝑥𝑥𝑖𝑖,𝑡𝑡 is the nominal interest rate, 𝑥𝑥𝑦𝑦,𝑡𝑡 is the deviation of output from steady-state, 
𝑥𝑥𝜋𝜋,𝑡𝑡 is the deviation of inflation from steady-state, and 𝛽𝛽 ∈ (0,1), 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞), 
𝛼𝛼𝜋𝜋 ∈ (1, ∞) are parameters. In online appendix H, we prove the following: 

Proposition 13 The BPY model is in the form of Problem 2, and satisfies Assumptions 
1 and 2. With 𝑇𝑇 = 1, 𝑀𝑀 < 0 (𝑀𝑀 = 0) if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 (𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋). 

For a 1 × 1 matrix, checking the conditions from section 2.3 is trivial. In particular, 
we have that if 𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, 𝑀𝑀 is a general positive definite, strictly semi-monotone, 
strictly co-positive, sufficient, P, S matrix; if 𝛼𝛼∆𝑦𝑦 ≤ 𝜎𝜎𝛼𝛼𝜋𝜋, 𝑀𝑀 is a general positive semi-
definite, semi-monotone, co-positive, sufficient, P0, S0 matrix. Hence, when 𝑇𝑇 = 1, if 
𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a unique solution for all 𝑞𝑞; if 𝛼𝛼∆𝑦𝑦 ≤ 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a 
unique solution whenever 𝑞𝑞 > 0 , and at least one solution when 𝑞𝑞 = 0 . When 𝛼𝛼∆𝑦𝑦 >
𝜎𝜎𝛼𝛼𝜋𝜋, 𝑀𝑀 is negative, and so for any positive 𝑞𝑞, there exists 𝑦𝑦 > 0 such that 𝑞𝑞 + 𝑀𝑀𝑀𝑀 = 0, 
so the model has multiple solutions. I.e. there are solutions that jump to the bound, even 
when the nominal interest rate would always be positive were there no bound at all. 

We illustrate this by adding a shock to the Euler equation, and showing impulse 
responses for alternative solutions. In particular, we replace the Euler equation with: 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 − 1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 − (0.01)𝜀𝜀𝑡𝑡�, 

and take the parameterisation 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , 𝜌𝜌 =

0.5, following BPY, and we additionally set 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.6, to ensure we are 
in the region with multiple solutions. In Figure 2, we show two alternative solutions to 
the impulse response to a magnitude 1 shock to 𝜀𝜀𝑡𝑡. The solid line in the left plot gives 
the solution which minimises ‖𝑦𝑦‖∞ . This solution never hits the bound, and is 
moderately expansionary. The solid line in the right plot gives the solution which 
minimises ‖𝑞𝑞 + 𝑀𝑀𝑀𝑀‖∞ . (The dotted line in the right plot repeats the left plot, for 
comparison.) This solution stays at the bound for two periods, and is strongly 
contractionary, with a magnitude around 100 times larger than the other solution. 
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Minimum ‖𝒚𝒚‖∞ solution 

 
Minimum ‖𝒒𝒒 + 𝑴𝑴𝑴𝑴‖∞ solution 

Figure 2: Alternative solutions following a magnitude 𝟏𝟏 impulse to 𝜺𝜺𝒕𝒕 
 

When 𝑇𝑇 > 1 , the previous results imply that if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 , then 𝑀𝑀  is neither P0, 
general positive semi-definite, semi-monotone, co-positive, nor sufficient, since the 
top-left 1 × 1 principal sub-matrix of 𝑀𝑀 is the same as when 𝑇𝑇 = 1. Thus, if anything, 
when 𝑇𝑇 > 1, the parameter region in which there are multiple solutions (when away 
from the bound or at it) is larger. However, numerical experiments suggest that this 
parameter region in fact remains the same as 𝑇𝑇  increases, which is unsurprising given 
the weak persistence of this model. Thus, if we want more interesting results with higher 
𝑇𝑇 , we need to consider a model with a stronger persistence mechanism. 

3.2. The BPY model with shadow interest rate persistence 
We introduce persistence in the shadow interest rate by replacing the previous Taylor 

rule with 𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡�, where 𝑥𝑥𝑑𝑑,𝑡𝑡, the shadow nominal interest rate is given by: 
𝑥𝑥𝑑𝑑,𝑡𝑡 = (1 − 𝜌𝜌)�1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1. 

It is easy to verify that this may be put in the form of Problem 2, and that with 𝛽𝛽 ∈
(0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 𝛼𝛼𝜋𝜋 ∈ (1, ∞) , 𝜌𝜌 ∈ (−1,1) , Assumption 2 is satisfied. For 

our numerical exercise, we again set 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), 

𝜌𝜌 = 0.5, following BPY. 
In Figure 3, we plot the regions in �𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋� space in which 𝑀𝑀 is a P-matrix (P0-

matrix) when 𝑇𝑇 = 2 or 𝑇𝑇 = 4. For this model, these correspond to the regions in which 
𝑀𝑀 is strictly semi-monotone (semi-monotone). As may be seen, in the smaller 𝑇𝑇  case, 
the P-matrix region is much larger. This relationship appears to continue to hold for 
both larger and smaller 𝑇𝑇 , with the equivalent 𝑇𝑇 = 1 plot being almost entirely shaded, 
and the large 𝑇𝑇  plot apparently tending to the equivalent plot from the model without 
monetary policy persistence. Intuitively, the persistence in the shadow nominal interest 
rate dampens the immediate response of nominal interest rates to inflation and output 
growth, making it harder to induce a zero lower bound episode over short-horizons. 
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𝑻𝑻 = 𝟐𝟐 

 
𝑻𝑻 = 𝟒𝟒 

Figure 3: Regions in which 𝑴𝑴 is a P-matrix (shaded grey) or a P0-matrix (shaded grey, plus the black line), 
when 𝑻𝑻 = 𝟐𝟐 (left) or 𝑻𝑻 = 𝟒𝟒 (right). 

 

Further evidence that the long-horizon behaviour is the same as in the model without 
persistence is provided by the fact that with 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.05, 14 then 𝑀𝑀 is a P-
matrix, and from Proposition 4 we have that 𝜍𝜍 > 6.131 × 10−8, so 𝑀𝑀 is an S-matrix for 
all sufficiently large 𝑇𝑇  . Furthermore, with 𝛼𝛼𝜋𝜋 = 1.5  and 𝛼𝛼∆𝑦𝑦 = 1.51 , then with 𝑇𝑇 =
200 , 𝑀𝑀  is not an S-matrix, 15  and from Proposition 4, 𝜍𝜍 ≤ 0 + numerical error , 
providing strong numerical evidence that for all sufficiently large 𝑇𝑇 , the LCP (𝑞𝑞, 𝑀𝑀) is 
not feasible for some 𝑞𝑞, and hence that the model does not always possess a solution. 

3.3. The BPY model with price targeting 
An alternative way to introduce persistence to the shadow interest rate is to set: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = (1 − 𝜌𝜌) �1 − 𝛽𝛽 +
𝛼𝛼∆𝑦𝑦

1 − 𝜌𝜌 �𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋
1 − 𝜌𝜌 𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1 

= (1 − 𝜌𝜌)(1 − 𝛽𝛽) + �𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1, 
which is as before apart from a missing (1 − 𝜌𝜌) multiplying the second bracketed term. 
In the limit as 𝜌𝜌 → 1, this tends to: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = 1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡 
where 𝑥𝑥𝑝𝑝,𝑡𝑡 is the price level, so 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1. This is a level targeting rule, with 
nominal GDP targeting as a special case with 𝛼𝛼∆𝑦𝑦 = 𝛼𝛼𝜋𝜋. Note that the omission of the 
(1 − 𝜌𝜌) coefficient on 𝛼𝛼∆𝑦𝑦 and 𝛼𝛼𝜋𝜋 is akin to having a “true” response to output growth 
of 𝛼𝛼∆𝑦𝑦

1−𝜌𝜌 and a “true” response to inflation of 𝛼𝛼𝜋𝜋
1−𝜌𝜌, so in the limit as 𝜌𝜌 → 1, we effectively 

have an infinitely strong response to these quantities. It turns out that this is sufficient 
to produce determinacy for all 𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋 ∈ (0, ∞). 

                                                 
14 Results for larger 𝛼𝛼∆𝑦𝑦 were impossible due to numerical errors. 
15 This was verified a second way by checking that −𝑀𝑀′ was an S0-matrix, as discussed in footnote 9. 
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In particular, given the model: 
𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 − 1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 + 𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 − 𝛽𝛽𝑥𝑥𝑝𝑝,𝑡𝑡 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 
we prove in online appendix I that the following proposition holds: 

Proposition 14 The BPY model with price targeting is in the form of Problem 2, and 
satisfies Assumptions 1 and 2. With 𝑇𝑇 = 1, 𝑀𝑀 > 0 for all 𝛼𝛼𝜋𝜋 ∈ (0, ∞), 𝛼𝛼∆𝑦𝑦 ∈ [0, ∞). 

Furthermore, with 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , as before, and 

𝛼𝛼∆𝑦𝑦 = 1 , 𝛼𝛼𝜋𝜋 = 1 , if we check our lower bound on 𝜍𝜍  with 𝑇𝑇 = 20 , we find that 𝜍𝜍 >
0.042. Hence, this model is always feasible for any sufficiently large 𝑇𝑇 . Given that 𝑑𝑑0 >
0 for this model, and that for 𝑇𝑇 = 20, 𝑀𝑀 is a P-matrix, this is strongly suggestive of the 
existence of a unique solution for any 𝑞𝑞 and for arbitrarily large 𝑇𝑇 . 

3.4. The linearized Fernández-Villaverde et al. (2012) model 
The discussion of BPY might lead one to believe that multiplicity and non-existence 

is solely a consequence of overly aggressive monetary responses to output growth, and 
overly weak monetary responses to inflation. However, it turns out that in basic New 
Keynesian models with positive inflation in steady-state, and hence price dispersion, 
even without any monetary response to output growth, and even with extremely 
aggressive monetary responses to inflation, there are still multiple equilibria in some 
states of the world, and no solutions in others. Price level targeting is again sufficient to 
fix these problems though. 

We show these results in the Fernández-Villaverde et al. (2012) model, which is a 
basic non-linear New Keynesian model without capital or price indexation of non-
resetting firms, but featuring (non-valued) government spending and steady-state 
inflation (and hence price-dispersion). We refer the reader to the original paper for the 
model’s equations. After substitutions, the model has four non-linear equations which 
are functions of gross inflation, labour supply, price dispersion and an auxiliary variable 
introduced from the firms’ price-setting first order condition. Of these variables, only 
price dispersion enters with a lag. We linearize16 the model around its steady-state, and 
then reintroduce the “max” operator which linearization removed from the Taylor rule. 
All parameters are set to the values given in Fernández-Villaverde et al. (2012). There 

                                                 
16 Prior to linearization, we first transform the model’s variables so that the transformed variables may take values on the entire real 
line. I.e. we work with the logarithms of labour supply, price dispersion and the auxiliary variable. For inflation, we note that 
inflation is always less than 𝜃𝜃

1
1−𝜀𝜀 (in the notation of Fernández-Villaverde et al. (2012)). Thus we work with a logit transformation 

of inflation over 𝜃𝜃
1

1−𝜀𝜀. This is generally more accurate than working with the logarithm of inflation. 
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is no term featuring output growth in the Taylor rule, so any multiplicity or non-
existence in this model cannot be a consequence of the mechanism highlighted by BPY. 

For this model, numerical calculations reveal that with 𝑇𝑇 ≤ 14 , 𝑀𝑀  is a P-matrix. 
However, with 𝑇𝑇 = 15, 𝑀𝑀 is neither a P nor an S matrix, and thus there are certainly 
some states of the world in which the model has multiple solutions, and others in which 
it has no solution at all.17 This also implies that 𝑀𝑀 is not a P-matrix for all larger 𝑇𝑇 . 
Furthermore, with 𝑇𝑇 = 1000, our upper bound on 𝜍𝜍 from Proposition 4 implies that 𝜍𝜍 ≤
0 + numerical error, providing evidence that 𝑀𝑀 is not an S-matrix for large 𝑇𝑇  either.18 

However, if we replace inflation in the monetary rule with the price level relative to 
its linear trend, which evolves according to: 

𝑥𝑥𝑝𝑝,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡−1 + 𝑥𝑥𝜋𝜋,𝑡𝑡 − 𝑥𝑥𝜋𝜋, (16) 
then with 𝑇𝑇 = 200 , we have that 𝑀𝑀  is an S-matrix, and the lower bound from 
Proposition 4 implies that 𝜍𝜍 > 0.003, and hence that for all sufficiently large 𝑇𝑇 , 𝑀𝑀 is an 
S-matrix, so there is always a feasible solution. 

3.5. The Smets and Wouters (2003) and Smets and Wouters (2007) models 
Smets and Wouters (2003) and Smets and Wouters (2007) are the canonical medium-

scale linear DSGE models, featuring assorted shocks, habits, price and wage indexation, 
capital (with adjustment costs), (costly) variable utilisation and quite general monetary 
policy reaction functions. The former model is estimated on Euro area data, while the 
latter is estimated on US data. The latter model also contains trend growth (permitting 
its estimation on non-detrended data), and a slightly more general aggregator across 
industries. However, overall, they are quite similar models, and any differences in their 
behaviour chiefly stems from differences in the estimated parameters. Since both 
models are incredibly well known in the literature, we omit their equations here, 
referring the reader to the original papers for further details.  

To assess the likelihood of multiple equilibria at or away from the zero lower bound, 
we augment each model with a ZLB on nominal interest rates, and evaluate the 
properties of each model’s 𝑀𝑀  matrix with large 𝑇𝑇  , at the estimated posterior-modes 
from the original papers. Note that we do not introduce an auxiliary for shadow nominal 
interest rates, so the monetary rules take the form of 𝑥𝑥𝑟𝑟,𝑡𝑡 = max�0, (1 − 𝜌𝜌𝑟𝑟)(⋯ ) +
𝜌𝜌𝑟𝑟𝑥𝑥𝑟𝑟,𝑡𝑡−1 + ⋯ �, in both cases. 

                                                 
17 That New Keynesian models might have no solution at all in some states of the world has also been discussed by Basu and 
Bundick (2015), though their mechanism only applies in the stochastic model. 
18 Since these results depend on the presence of the endogenous state, price dispersion, they are not directly related to the results of 
Davig and Leeper (2007). Further differences include the endogeneity of ZLB episodes here, and the fact that we are not making 
any restrictions on the solution space, which they do, as observed by Farmer, Waggoner, and Zha (2010). 
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As shown in Lemma 4, if the diagonal of the 𝑀𝑀 matrix ever goes negative, then the 
𝑀𝑀  matrix cannot be general positive semi-definite, semi-monotone, sufficient, P0 or 
copositive, and hence the model will sometimes have multiple solutions even when 
away from the zero lower bound (i.e. for some strictly positive 𝑞𝑞). In Figure 4, we plot 
the diagonal of the 𝑀𝑀 matrix for each model in turn,19 i.e. the impact on nominal interest 
rates in period 𝑡𝑡  of news in period 1  that a positive, magnitude one shock will hit 
nominal interest rates in period 𝑡𝑡. Immediately, we see that while in the US model, these 
impacts remain positive at all horizons, in the Euro area model, these impacts turn 
negative after just a few periods, and remain so at least up to period 40. Therefore, in 
the ZLB augmented Smets and Wouters (2003) model, there is not always a unique 
equilibrium. Furthermore, there are sequences of predicted future shocks (with positive 
density) for which the model without the ZLB would always feature positive interest 
rates, but for which the model with the ZLB could hit zero. 

 

 
The Smets and Wouters (2003) model 

 
The Smets and Wouters (2007) model 

Figure 4: The diagonals of the 𝑴𝑴 matrices for the Smets and Wouters (2003; 2007) models 

 
It remains for us to assess whether 𝑀𝑀 is a P(0)-matrix or (strictly) semi-monotone for 

the Smets and Wouters (2007) model. Numerical calculations reveal that for 𝑇𝑇 < 9, 𝑀𝑀 
is a P-matrix, and hence is strictly semi-monotone. However, with 𝑇𝑇 ≥ 9, 𝑀𝑀 contains a 
6 × 6 principal sub-matrix (with indices 1,2,4,6,7,9) with negative determinant, which 
is neither an S nor an S0-matrix. Thus, for 𝑇𝑇 ≥ 9, 𝑀𝑀 is not a P(0)-matrix or (strictly) 
semi-monotone, and hence this model also has multiple equilibria, even when away 
from the bound. Given that the US has been at the ZLB for over eight years, that 𝑇𝑇  
ought to be greater than eight quarters seems uncontroversial. Hence, in both the Euro 
area and the US, we ought to take seriously the possibility that the existence of the ZLB 
produces non-uniqueness. Furthermore, it turns out that for neither model is 𝑀𝑀 an S-
matrix even with 𝑇𝑇 = 1000 , and thus for both models there are some 𝑞𝑞 ∈ ℝ1000  for 

                                                 
19 The MOD files for the Smets and Wouters (2003) model were derived from the Macro Model Database (Wieland et al. 2012). 
The MOD files for the model were derived from files provided by Johannes Pfeifer here: http://goo.gl/CP53x5  
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which no solution exists. This is strongly suggestive of non-existence for some 𝑞𝑞 even 
for arbitrarily large 𝑇𝑇 . While placing a larger coefficient on inflation in the Taylor rule 
can make the Euro area picture more like the US one, with a strictly positive diagonal 
to the 𝑀𝑀 matrix, even with incredibly large coefficients, 𝑀𝑀 remained a non-P-matrix. 

Alternatively, suppose we replace the monetary rule in both models by: 
𝑥𝑥𝑟𝑟,𝑡𝑡 = max�0, (1 − 𝜌𝜌𝑟𝑟)�𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝑥𝑥𝑝𝑝,𝑡𝑡� + 𝜌𝜌𝑟𝑟𝑥𝑥𝑟𝑟,𝑡𝑡−1� 

where 𝜌𝜌𝑟𝑟 is as in the respective original model, where the price level 𝑥𝑥𝑝𝑝,𝑡𝑡 again evolves 
according to equation (16), and where 𝑥𝑥𝑦𝑦,𝑡𝑡 is output relative to its linear trend. Then, for 
both models, for all 𝑇𝑇  tested, 𝑀𝑀 was a P-matrix, and for the Euro area model we have 
that 𝜍𝜍 > 3 × 10−7 and for the US model we have that 𝜍𝜍 > 0.002. As one would expect, 
this result is also robust to departures from equal, unit, coefficients. Thus, price level 
targeting again appears to be sufficient for determinacy in the presence of the ZLB. 

4. Conclusion 

This paper provides the first theoretical results on existence and uniqueness for 
otherwise linear models with occasionally binding constraints. As such, it may be 
thought of as doing for models with occasionally binding constraints what Blanchard 
and Kahn (1980) did for linear models. 

We provided necessary and sufficient conditions for the existence of a unique 
equilibrium, as well as such conditions for uniqueness when away from the bound. In 
our application to New Keynesian models, we showed that these conditions were 
violated in entirely standard models, rather than being an artefact of strange policy rules 
as one might have inferred from the results of Brendon, Paustian, and Yates (2015). In 
the presence of multiplicity, there is the potential for additional endogenous volatility 
from sunspots, so the welfare benefits of avoiding multiplicity may be substantial. 
Additionally, as we saw in Figure 2, the additional equilibria may feature huge drops in 
output, giving further welfare reasons for their avoidance. The possibility of self-
fulfilling jumps and returns from the ZLB also gives an alternative rationale for the neo-
Fisherian view that argues that raising interest rates may raise inflation at the ZLB.20 

Luckily, our results suggest that a determinate equilibrium may be produced in 
standard New Keynesian models if the central bank switches to targeting the price level, 
rather than the inflation rate. This provides an additional argument for price level 
targeting in the presence of a zero lower bound to those made by Basu and Bundick 
(2015) and Coibion, Gorodnichenko, and Wieland (2012). Indeed, it is possible that 
Coibion, Gorodnichenko, and Wieland’s results on the welfare benefits of price level 

                                                 
20 Theoretical and empirical evidence for this view is presented in Cochrane (2015). 
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targeting were actually driven by having inadvertently selected one of the worse 
equilibria under inflation targeting, since they use a solution algorithm for the otherwise 
linear model which gives no guarantees on the returned equilibrium. 

In addition, we provided conditions for existence of any solution that converges to the 
“good” steady-state, and showed that under inflation targeting, standard New Keynesian 
models again failed to satisfy these conditions in some states of the world. Whereas the 
literature started by Benhabib, Schmitt-Grohé, and Uribe (2001a; 2001b) showed that 
the existence of a “bad” steady-state may imply additional volatility if agents long-run 
beliefs are not pinned down by the inflation target, here we showed that in some states 
of the world, under inflation targeting there is no way for the economy to converge to 
the “good” steady-state. This in turn implies that agents cannot place prior certainty on 
converging to the “good” steady-state, thus rationalising the beliefs required to get the 
kind of global multiplicity at the zero lower bound that these and other authors have 
focussed on. Once again though, we showed that price level targeting is sufficient to 
restore existence and determinacy. 
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Online Appendices to: “Existence and uniqueness of 
solutions to dynamic models with occasionally binding 
constraints.” 

Tom D. Holden, School of Economics, University of Surrey 

A. Construction of a static model with no dynamic solution in some 
states 

Consider the model: 
𝒶𝒶𝑡𝑡 = max{0, 𝒷𝒷𝑡𝑡} , 𝒶𝒶𝑡𝑡 = 1 − 𝒸𝒸𝑡𝑡, 𝒸𝒸𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡. 

The model has steady-state 𝒶𝒶 = 𝒷𝒷 = 1, 𝒸𝒸 = 0. Furthermore, in the model’s Problem 3 
type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇, 

where 𝑦𝑦⋅,⋅ is defined as in Problem 3, we have that: 

𝒸𝒸𝑡𝑡 = �𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
0 if 𝑡𝑡 > 𝑇𝑇

, 

so: 
𝒷𝒷𝑡𝑡 = �1 − 2𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

1 if 𝑡𝑡 > 𝑇𝑇
, 

implying: 
𝒶𝒶𝑡𝑡 = �1 − 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

1 if 𝑡𝑡 > 𝑇𝑇
. 

thus, 𝑀𝑀 = −𝐼𝐼  for this model. 

B. Proof of sufficient conditions for feasibility with 𝑻𝑻 = ∞ 

First, define 𝐺𝐺 ≔ −𝐶𝐶(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1, and note that if 𝐿𝐿 is the lag (right-shift) operator, 
the model from Problem 1 can be written as: 

𝐿𝐿−1(𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶)(𝑥𝑥 − 𝜇𝜇) = 0. 
Furthermore, by the definitions of 𝐹𝐹 and 𝐺𝐺: 

(𝐿𝐿 − 𝐺𝐺)(𝐵𝐵 + 𝐶𝐶𝐶𝐶)(𝐼𝐼 − 𝐹𝐹𝐹𝐹) = 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶, 
so the stability of the model from Problem 1 is determined by the solutions for 𝑧𝑧 ∈ ℂ 
of the polynomial: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶� = det(𝐼𝐼𝐼𝐼 − 𝐺𝐺) det(𝐵𝐵 + 𝐶𝐶𝐶𝐶) det(𝐼𝐼 − 𝐹𝐹𝐹𝐹). 
Now by Assumption 1, all of the roots of det(𝐼𝐼 − 𝐹𝐹𝐹𝐹) are strictly outside of the unit 
circle, and all of the other roots of det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶� are weakly inside the unit circle 
(else there would be indeterminacy), thus, all of the roots of det(𝐼𝐼𝐼𝐼 − 𝐺𝐺) are weakly 
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inside the unit circle.  Therefore, if we write 𝜌𝜌ℳ for the spectral radius of some matrix 
ℳ, then, by this discussion and Assumption 2, 𝜌𝜌𝐺𝐺 < 1. 

Next, let 𝑠𝑠𝑡𝑡
∗, 𝑥𝑥𝑡𝑡

∗ ∈ ℝ𝑛𝑛×ℕ+ be such that for any 𝑦𝑦 ∈ ℝℕ+, the 𝑘𝑘th columns of 𝑠𝑠𝑡𝑡
∗𝑦𝑦 and 𝑥𝑥𝑡𝑡

∗𝑦𝑦 
give the value of 𝑠𝑠𝑡𝑡 and 𝑥𝑥𝑡𝑡 following a magnitude 1 news shock at horizon 𝑘𝑘, i.e. when 
𝑥𝑥0 = 𝜇𝜇 and 𝑦𝑦0 is the 𝑘𝑘th row of 𝐼𝐼ℕ+×ℕ+. Then: 

𝑠𝑠𝑡𝑡
∗ = −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ + 𝐺𝐺𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+1,1:∞ + 𝐺𝐺2𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+2,1:∞ + ⋯ � 

= −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1 �(𝐺𝐺𝐺𝐺)𝑘𝑘
∞

𝑘𝑘=0
𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ 

= −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1(𝐼𝐼 − 𝐺𝐺𝐺𝐺)−1𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞, 
where the infinite sums are well defined as 𝜌𝜌𝐺𝐺 < 1, and where 𝐼𝐼𝑡𝑡,1:∞ ∈ ℝ1×ℕ+ is a row 
vector with zeros everywhere except position 𝑡𝑡 where there is a 1. Thus: 

𝑠𝑠𝑡𝑡
∗ = �0𝑛𝑛×(𝑡𝑡−1) 𝑠𝑠1

∗� = 𝐿𝐿𝑡𝑡−1𝑠𝑠1
∗. 

Furthermore,  

(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗) = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠𝑘𝑘

∗
𝑡𝑡

𝑗𝑗=1
= � 𝐹𝐹𝑡𝑡−𝑗𝑗𝐿𝐿𝑗𝑗−1𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
, 

i.e.: 

(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗)⋅,𝑘𝑘 = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠1,⋅,𝑘𝑘+1−𝑗𝑗

∗
𝑡𝑡

𝑗𝑗=1
= − � 𝐹𝐹𝑡𝑡−𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1𝐺𝐺𝑘𝑘−𝑗𝑗𝐼𝐼⋅,1

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
, 

and so the 𝑘𝑘th offset diagonal of 𝑀𝑀 (𝑘𝑘 ∈ ℤ) is given by the first row of the 𝑘𝑘th column 
of: 

𝐿𝐿−𝑡𝑡(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗) = 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑡𝑡−𝑗𝑗𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
= 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
, 

where we abuse notation slightly by allowing 𝐿𝐿−1 to give a result with indices in ℤ 
rather than ℕ+, with padding by zeros. Consequently, for all 𝑘𝑘 ∈ ℕ+, 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐹𝐹

𝑡𝑡 �, 
as 𝑡𝑡 → ∞ , for all 𝑡𝑡 ∈ ℕ+ , 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐺𝐺

𝑘𝑘 � , as 𝑘𝑘 → ∞ , and for all 𝑘𝑘 ∈ ℤ , 𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 −
lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛−1(𝜌𝜌𝐹𝐹𝜌𝜌𝐺𝐺)𝑡𝑡�, as 𝑡𝑡 → ∞. Hence, 

sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

exists and is well defined, and so: 
𝜍𝜍 = sup

𝑦𝑦∈[0,1]ℕ+

∃𝑇𝑇∈ℕ s.t. ∀𝑡𝑡>𝑇𝑇,𝑦𝑦𝑡𝑡=0

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦, 

since every point in [0,1]ℕ+ is a limit (under the supremum norm) of a sequence of 
points in the set: 

�𝑦𝑦 ∈ [0,1]ℕ+�∃𝑇𝑇 ∈ ℕ s.t. ∀𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0�. 
Thus, we just need to provide conditions under which sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0. 
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To produce such conditions, we need constructive bounds on 𝑀𝑀, even if they have 
slightly worse convergence rates. For any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 
𝜙𝜙 ∈ (𝜌𝜌ℳ, 1), let: 

𝒞𝒞ℳ,𝜙𝜙 ≔ sup
𝑘𝑘∈ℕ

��ℳ𝜙𝜙−1�𝑘𝑘�2. 

Furthermore, for any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜖𝜖 > 0, let: 
𝜌𝜌ℳ,𝜖𝜖 ≔ max{|𝑧𝑧||𝑧𝑧 ∈ ℂ, 𝜎𝜎min(ℳ − 𝑧𝑧𝑧𝑧) = 𝜖𝜖}, 

where 𝜎𝜎min(ℳ − 𝑧𝑧𝑧𝑧)  is the minimum singular value of ℳ − 𝑧𝑧𝑧𝑧  , and let 𝜖𝜖∗(ℳ) ∈
(0, ∞] solve: 

𝜌𝜌ℳ,𝜖𝜖 = 1. 
(This has a solution in (0, ∞] by continuity as 𝜌𝜌ℳ < 1.) Then, by Theorem 16.2 of 
Trefethen and Embree (2005), for any 𝐾𝐾 ∈ ℕ and 𝑘𝑘 > 𝐾𝐾: 

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2��ℳ𝜙𝜙−1�𝑘𝑘−𝐾𝐾�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

Now, ��ℳ𝜙𝜙−1�𝐾𝐾�2 → 0 as 𝐾𝐾 → ∞, hence, there exists some 𝐾𝐾 ∈ ℕ such that: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥ ��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

≥ sup
𝑘𝑘>𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2, 

meaning 𝒞𝒞ℳ,𝜙𝜙 = sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 . The quantity 𝜌𝜌ℳ,𝜖𝜖  (and hence 𝜖𝜖∗(ℳ) ) may 

be efficiently computed using the methods described by Wright and Trefethen (2001), 
and implemented in their EigTool toolkit21. Thus, 𝒞𝒞ℳ,𝜙𝜙 may be calculated in finitely 
many operations by iterating over 𝐾𝐾 ∈ ℕ until a 𝐾𝐾  is found which satisfies: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥ ��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

From the definition of 𝒞𝒞ℳ,𝜙𝜙, we have that for any 𝑘𝑘 ∈ ℕ and any 𝜙𝜙 ∈ (𝜌𝜌ℳ, 1): 
�ℳ𝑘𝑘�2 ≤ 𝒞𝒞ℳ,𝜙𝜙𝜙𝜙𝑘𝑘. 

Now, fix 𝜙𝜙𝐹𝐹 ∈ (𝜌𝜌𝐹𝐹, 1) and 𝜙𝜙𝐺𝐺 ∈ (𝜌𝜌𝐺𝐺, 1),22 and define: 
𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

≔ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝒞𝒞𝐺𝐺,𝜙𝜙𝐹𝐹

�(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�2, 
then, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘� = �(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗)1,𝑘𝑘� ≤ �(𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗)⋅,𝑘𝑘�2 ≤ � �𝐹𝐹𝑡𝑡−𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�2�𝐺𝐺𝑘𝑘−𝑗𝑗�2

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑡𝑡−𝑗𝑗𝜙𝜙𝐺𝐺
𝑘𝑘−𝑗𝑗

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘 (𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)− min{𝑡𝑡,𝑘𝑘} − 1
1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

. 

Additionally, for all 𝑡𝑡 ∈ ℕ+, 𝑘𝑘 ∈ ℤ: 
�𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘� = ��𝐿𝐿−𝑡𝑡(𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗)�1,𝑘𝑘 − � lim𝜏𝜏→∞ 𝐿𝐿−𝑡𝑡(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗)�

1,𝑘𝑘
� 

                                                 
21 This toolkit is available from https://github.com/eigtool/eigtool, and is included in dynareOBC.  
22 In practice, we try a grid of values, as it is problem dependent whether high 𝜙𝜙𝐹𝐹 and low 𝒦𝒦�ℳ𝜙𝜙−1� is preferable to low 𝜙𝜙𝐹𝐹 and 
high 𝒦𝒦�ℳ𝜙𝜙−1�. 

https://github.com/eigtool/eigtool
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≤
�
��
�

⎝
⎜⎛𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
− 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
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𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} ⎠
⎟⎞

⋅,0�
��
�
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=
�
��
� � 𝐹𝐹𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1𝐺𝐺𝑗𝑗+𝑘𝑘𝐼𝐼⋅,1

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} �
��
�

2

 

≤ � �𝐹𝐹𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1�2�𝐺𝐺𝑗𝑗+𝑘𝑘�2

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑗𝑗 𝜙𝜙𝐺𝐺
𝑗𝑗+𝑘𝑘

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
max{𝑡𝑡,−𝑘𝑘}𝜙𝜙𝐺𝐺

max{0,𝑡𝑡+𝑘𝑘}

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, 

so, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡� ≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. 

To evaluate lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡, note that this limit is the top element from the (𝑘𝑘 − 𝑡𝑡)th 

column of: 
𝑑𝑑 ≔ lim𝜏𝜏→∞ 𝐿𝐿−𝜏𝜏(𝑥𝑥𝜏𝜏

∗ − 𝜇𝜇∗) = 𝐿𝐿−1�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1𝑠𝑠1
∗ 

= −�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1(𝐼𝐼 − 𝐺𝐺𝐺𝐺)−1𝐼𝐼⋅,1𝐼𝐼0,−∞:∞, 
where 𝐼𝐼0,−∞:∞ ∈ ℝ1×ℤ is zero everywhere apart from index 0 where it equals 1. Hence, 
by the definitions of 𝐹𝐹 and 𝐺𝐺: 

𝐴𝐴𝐿𝐿−1𝑑𝑑 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶𝐶𝐶 = −𝐼𝐼⋅,1𝐼𝐼0,−∞:∞. 
In other words, if we write 𝑑𝑑𝑘𝑘 in place of 𝑑𝑑⋅,𝑘𝑘 for convenience, then, for all 𝑘𝑘 ∈ ℤ: 

𝐴𝐴𝑑𝑑𝑘𝑘+1 + 𝐵𝐵𝑑𝑑𝑘𝑘 + 𝐶𝐶𝑑𝑑𝑘𝑘−1 = − �𝐼𝐼⋅,1 if 𝑘𝑘 = 0
0 otherwise

 

I.e. the homogeneous part of the difference equation for 𝑑𝑑−𝑡𝑡 is identical to that of 𝑥𝑥𝑡𝑡 −
𝜇𝜇. The time reversal here is intuitive since we are indexing diagonals such that indices 
increase as we move up and to the right in 𝑀𝑀, but time is increasing as we move down 
in 𝑀𝑀. 

It turns out that exploiting the possibility of reversing time is the key to easy 
evaluating 𝑑𝑑𝑘𝑘. First, note that for 𝑘𝑘 < 0, it must be the case that 𝑑𝑑𝑘𝑘 = 𝐹𝐹𝑑𝑑𝑘𝑘+1, since the 
shock has already “occurred” (remember, that we are going forwards in “time” when 
we reduce 𝑘𝑘). Now consider the model in which we are going forwards time when we 
increase 𝑘𝑘, i.e. the model with: 

𝐿𝐿�𝐴𝐴𝐿𝐿−1𝐿𝐿−1 + 𝐵𝐵𝐿𝐿−1 + 𝐶𝐶�𝑑𝑑 = 0, 
subject to the terminal condition that 𝑑𝑑𝑘𝑘 → 0 as 𝑘𝑘 → ∞, which must hold as we have 
already proved that the first row of 𝑀𝑀 converges to zero. Now, let 𝑧𝑧 ∈ ℂ, 𝑧𝑧 ≠ 0 be a 
solution to: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶�, 
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and define 𝑧𝑧 ̃ = 𝑧𝑧−1, so: 
0 = det�𝐴𝐴 + 𝐵𝐵𝑧𝑧 ̃ + 𝐶𝐶𝑧𝑧2̃� = 𝑧𝑧−2 det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶�

= det(𝐼𝐼 − 𝐺𝐺𝑧𝑧)̃ det(𝐵𝐵 + 𝐶𝐶𝐶𝐶) det(𝐼𝐼𝑧𝑧 ̃ − 𝐹𝐹). 
By Assumption 1, all of the roots of det(𝐼𝐼𝑧𝑧 ̃ − 𝐹𝐹) are inside the unit circle, thus they 
cannot contribute to the dynamics of the time reversed process, else the terminal 
condition would be violated. Thus, the time reversed model has a unique solution 
satisfying the terminal condition with a transition matrix with the same eigenvalues as 
𝐺𝐺. Consequently, this solution can be calculated via standard methods for solving linear 
DSGE models, and it will be given by 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1 , for all 𝑘𝑘 > 0 , where 𝐻𝐻 =
−(𝐵𝐵 + 𝐴𝐴𝐴𝐴)−1𝐶𝐶, and 𝜙𝜙𝐻𝐻 = 𝜙𝜙𝐺𝐺 < 1, by Assumption 2. 

It just remains to determine the value of 𝑑𝑑0. By the previous results, this must satisfy: 
−𝐼𝐼⋅,1 = 𝐴𝐴𝑑𝑑1 + 𝐵𝐵𝑑𝑑0 + 𝐶𝐶𝑑𝑑−1 = (𝐴𝐴𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝑑𝑑0. 

Hence: 
𝑑𝑑0 = −(𝐴𝐴𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1𝐼𝐼⋅,1. 

This gives a readily computed solution for the limits of the diagonals of 𝑀𝑀. Lastly, note 
that: 

�𝑑𝑑−𝑡𝑡,1� ≤ ‖𝑑𝑑−𝑡𝑡‖2 = ‖𝐹𝐹𝑡𝑡𝑑𝑑0‖2 ≤ ‖𝐹𝐹𝑡𝑡‖2‖𝑑𝑑0‖2 ≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡 ‖𝑑𝑑0‖2, 
and: 

�𝑑𝑑𝑡𝑡,1� ≤ ‖𝑑𝑑𝑡𝑡‖2 = ‖𝐻𝐻𝑡𝑡𝑑𝑑0‖2 ≤ ‖𝐻𝐻𝑡𝑡‖2‖𝑑𝑑0‖2 ≤ 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
𝜙𝜙𝐻𝐻

𝑡𝑡 ‖𝑑𝑑0‖2. 
We will use these results in producing our bounds on 𝜍𝜍. 

First, fix 𝑇𝑇 ∈ ℕ+, and define a new matrix 𝑀𝑀(𝑇𝑇) ∈ ℝℕ+×ℕ+ by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇
(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 , 

and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇 , 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) = 𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, then: 

𝜍𝜍 ≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

𝑦𝑦∞1∞×1
� ≥ max

𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
𝑦𝑦∞1∞×1

� 

= max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
⎨
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
� ,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>𝑇𝑇

�� �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
�
⎭�
��
⎬
��
�⎫

 

≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
�⎨
��
��
��
��
��
⎧

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞ ⎦
⎥⎥
⎥⎥
⎤

,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>2𝑇𝑇

⎣
⎢
⎢
⎢
⎡ � 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺)⎦
⎥
⎥
⎥
⎤

⎭�
��
��
��
��
�⎬
��
��
��
��
��
⎫

. 

Now, for 𝑡𝑡 ≥ 𝑇𝑇 : 
��(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1� ≤ �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2 ≤ �(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2

≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇 �(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2, 
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so: 

� 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
− �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1𝑦𝑦∞

≥ − � 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑘𝑘‖𝑑𝑑0‖2

𝑇𝑇

𝑘𝑘=1
− 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡−𝑇𝑇 �(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2𝑦𝑦∞

= −𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡 �𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

‖𝑑𝑑0‖2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇 �(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2𝑦𝑦∞, 

thus 𝜍𝜍 ≥ 𝜍𝜍, where: 

𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
�⎨
��
��
��
��
��
⎧

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞ ⎦
⎥⎥
⎥⎥
⎤

,

⎣
⎢⎢
⎢
⎡−𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
2𝑇𝑇+1�𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

‖𝑑𝑑0‖2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑇𝑇+1�(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2𝑦𝑦∞ + �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) ⎦
⎥⎥
⎥
⎤

⎭�
��
��
��
��
�⎬
��
��
��
��
��
⎫

. 

It is worth noting that as 𝑇𝑇 → ∞, the final minimand in this expression tends to: 
�(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞ + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞, 

i.e. a positive multiple of the doubly infinite sum of 𝑑𝑑1,𝑘𝑘  over all 𝑘𝑘 ∈ ℤ . If this 
expression is negative, then our lower bound on 𝜍𝜍 will be negative as well, and hence 
uninformative. 

To construct an upper bound on 𝜍𝜍 , fix 𝑇𝑇 ∈ ℕ+ , and define a new matrix 𝑀𝑀(𝑇𝑇) ∈
ℝℕ+×ℕ+  by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇

(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇  , and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+ , with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇  , 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) =

�𝑑𝑑𝑘𝑘−𝑡𝑡,1� + 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. Then: 

𝜍𝜍 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

1∞×1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1�
∞

𝑘𝑘=𝑇𝑇+1
+ � 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

∞

𝑘𝑘=𝑇𝑇+1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + � �𝑑𝑑𝑘𝑘,1�
∞

𝑘𝑘=𝑇𝑇+1−𝑡𝑡
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐺𝐺

𝑘𝑘
∞

𝑘𝑘=0
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
‖𝑑𝑑0‖2𝜙𝜙𝐻𝐻

𝑇𝑇+1−𝑡𝑡 � 𝜙𝜙𝐻𝐻
𝑘𝑘

∞

𝑘𝑘=0
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺)� 

= 𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 +
𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻

‖𝑑𝑑0‖2𝜙𝜙𝐻𝐻
𝑇𝑇+1−𝑡𝑡

1 − 𝜙𝜙𝐻𝐻
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺)�. 
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C. Other properties of the solution set 

First, let us give one further definition: 

Definition 9 ((Non-)Degenerate matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   is called a non-
degenerate matrix if the principal minors of 𝑀𝑀  are all non-zero. 𝑀𝑀  is called a 
degenerate matrix if it is not a non-degenerate matrix. 

Then, conditions for having a finite or convex set of solutions are given in the following 
propositions. 

Proposition 15 The LCP (𝑞𝑞, 𝑀𝑀) has a finite (possibly zero) number of solutions for all 
𝑞𝑞 ∈ ℝ𝑇𝑇  if and only if 𝑀𝑀 is non-degenerate. (Cottle, Pang, and Stone 2009a) 

Proposition 16 The LCP (𝑞𝑞, 𝑀𝑀) has a convex (possibly empty) set of solutions for all 
𝑞𝑞 ∈ ℝ𝑇𝑇  if and only if 𝑀𝑀 is column sufficient. (Cottle, Pang, and Stone 2009a) 

D. Generalisations to richer otherwise linear models 

It is straightforward to generalise the results for Problem 2 to less restrictive otherwise 
linear models with occasionally binding constraints. 

Firstly, if the constraint is on a variable other than 𝑥𝑥1,𝑡𝑡, or in another equation than the 
first, then it is immediately clear that all of the results must go through as before (just 
by relabelling and rearranging). Furthermore, if the constraint takes the form of 𝑧𝑧1,𝑡𝑡 =
max�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡� , where 𝑧𝑧1,𝑡𝑡 , 𝑧𝑧2,𝑡𝑡  and 𝑧𝑧3,𝑡𝑡  are linear expressions in the contemporaneous 
values, lags and leads of 𝑥𝑥𝑡𝑡, then, assuming without loss of generality that 𝑧𝑧3,⋅ > 𝑧𝑧2,⋅ in 
steady-state, we have that 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡� . Hence, adding a new 
auxiliary variable 𝑥𝑥𝑛𝑛+1,𝑡𝑡, with the associated equation 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡, and replacing 
the constrained equation with 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡�, we have a new equation in the 
form covered by our original results. Moreover, if rather than a max we have a min, we 
just use the fact that if 𝑧𝑧1,𝑡𝑡 = min�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡�, then −𝑧𝑧1,𝑡𝑡 = max�−𝑧𝑧2,𝑡𝑡, −𝑧𝑧3,𝑡𝑡�, which is in 
the form covered by the generalisation just established. 

We may also readily deal with multiple occasionally binding constraints, following 
the representation used in Holden and Paetz (2012). Suppose there are 𝑐𝑐 constrained 
variables in the model. For 𝑎𝑎 ∈ {1, … , 𝑐𝑐} , let 𝑞𝑞(𝑎𝑎)  be the path of the 𝑎𝑎 th constrained 
variable in the absence of all constraints. For 𝑎𝑎, 𝑏𝑏 ∈ {1, … , 𝑐𝑐}, let 𝑀𝑀(𝑎𝑎,𝑏𝑏) be the matrix 
created by horizontally stacking the column vector relative impulse responses of the 𝑎𝑎th 
constrained variable to magnitude 1 news shocks at horizon 0, … , 𝑇𝑇 − 1 to the equation 
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defining the 𝑏𝑏 th constrained variables. For example, if 𝑐𝑐 = 1  so there is a single 
constraint, then we would have that 𝑀𝑀(1,1) = 𝑀𝑀 as defined in equation (2). Finally, let: 

𝑞𝑞 ≔
⎣
⎢⎡
𝑞𝑞(1)

⋮
𝑞𝑞(𝑐𝑐)⎦

⎥⎤ , 𝑀𝑀 ≔
⎣
⎢⎡
𝑀𝑀(1,1) ⋯ 𝑀𝑀(1,𝑐𝑐)

⋮ ⋱ ⋮
𝑀𝑀(𝑐𝑐,1) ⋯ 𝑀𝑀(𝑐𝑐,𝑐𝑐)⎦

⎥⎤, 

and let 𝑦𝑦  be a solution to the LCP (𝑞𝑞, 𝑀𝑀) . Then the vertically stacked paths of the 
constrained variables in a solution which satisfies these constraints is given by 𝑞𝑞 + 𝑀𝑀𝑀𝑀, 
and again any solution satisfying the constraints corresponds to a solution to the LCP. 
Thus, in the multiple constraint case, all of our previous results go through (almost) 
immediately, with this redefined 𝑞𝑞 vector and 𝑀𝑀 matrix. 

E. Proof of the sufficient conditions for the existence of a unique 
solution to the dynamic programming problem 

Results when 𝑿̃𝑿 is possibly non-compact, but 𝚪𝚪�(𝒙𝒙) is compact valued and 𝒙𝒙 ∈ 𝚪𝚪�(𝒙𝒙) 
for all 𝒙𝒙 ∈ 𝑿̃𝑿 We first note that for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋̃: 

ℱ�(𝑥𝑥, 𝑧𝑧) ≤ 𝑢𝑢(0) − 1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′, 

thus our objective function is bounded above without additional assumptions. For a 
lower bound, we assume that for all 𝑥𝑥 ∈ 𝑋𝑋̃, 𝑥𝑥 ∈ Γ�(𝑥𝑥), so holding the state fixed is always 
feasible. This is true in very many standard applications. Then, the value of setting 𝑥𝑥𝑡𝑡 =
𝑥𝑥0 for all 𝑡𝑡 ∈ ℕ+ provides a lower bound for our objective function. 

More precisely, we define 𝕍𝕍 ≔ �𝑣𝑣�𝑣𝑣: 𝑋𝑋̃ → [−∞, ∞)� and 𝑣𝑣, 𝑣𝑣 ∈ 𝕍𝕍 by: 

𝑣𝑣(𝑥𝑥) = 1
1 − 𝛽𝛽 ℱ�(𝑥𝑥0, 𝑥𝑥0), 

𝑣𝑣(𝑥𝑥) = 1
1 − 𝛽𝛽 �𝑢𝑢(0) − 1

2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′�, 

for all 𝑥𝑥 ∈ 𝑋𝑋̃. 
Finally, define ℬ: 𝕍𝕍 → 𝕍𝕍 by: 

ℬ(𝑣𝑣)(𝑥𝑥) = sup
𝑧𝑧∈Γ�(𝑥𝑥)

�ℱ�(𝑥𝑥, 𝑧𝑧) + 𝛽𝛽𝛽𝛽(𝑧𝑧)� (17) 

for all 𝑣𝑣 ∈ 𝕍𝕍  and for all 𝑥𝑥 ∈ 𝑋𝑋̃ . Then ℬ(𝑣𝑣) ≥ 𝑣𝑣  and ℬ(𝑣𝑣) ≤ 𝑣𝑣 . Furthermore, if some 
sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞   satisfies the constraint that for all 𝑡𝑡 ∈ ℕ+ , 𝑥𝑥𝑡𝑡 ∈ Γ�(𝑥𝑥𝑡𝑡−1) , and the 
objective in (8) is finite for that sequence, then it must be the case that ‖𝑥𝑥𝑡𝑡‖∞𝑡𝑡𝛽𝛽

𝑡𝑡
2 → 0 as 

𝑡𝑡 → ∞ (by the comparison test), so:  
lim inf

𝑡𝑡→∞
𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Additionally, for any sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ : 

lim sup
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Thus, our dynamic programming problem satisfies the assumptions of Theorem 2.1 of 
Kamihigashi (2014), and so ℬ  has a unique fixed point in [𝑣𝑣, 𝑣𝑣]  to which ℬ𝑘𝑘(𝑣𝑣) 
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converges pointwise, monotonically, as 𝑘𝑘 → ∞ , and which is equal to the function 
𝑣𝑣∗: 𝑋𝑋̃ → ℝ defined by: 

𝑣𝑣∗(𝑥𝑥0) = sup�∑ 𝛽𝛽𝑡𝑡−1ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞
𝑡𝑡=1 �∀𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1)� , (18) 

for all 𝑥𝑥0 ∈ 𝑋𝑋̃. 
Furthermore, if we define 𝕎𝕎 ≔ �𝑣𝑣 ∈ 𝑉𝑉�𝑣𝑣 is continuous on 𝑋𝑋̃, 𝑣𝑣 is concave on 𝑋𝑋̃� , 

then as 𝑢𝑢(̃2) is negative-definite, 𝑣𝑣 ∈ 𝕎𝕎. Additionally, under the assumption that Γ�(𝑥𝑥) 
is compact valued, if 𝑣𝑣 ∈ 𝕎𝕎, then ℬ(𝑣𝑣) ∈ 𝕎𝕎, by the theorem of the maximum,23 and, 
furthermore, there is a unique policy function which attains the supremum in the 
definition of ℬ(𝑣𝑣). Moreover, 𝑣𝑣∗ = lim

𝑘𝑘→∞
ℬ𝑘𝑘(𝑣𝑣) is concave and lower semi-continuous 

on 𝑋𝑋̃ . 24  We just need to prove that 𝑣𝑣∗  is upper semi-continuous. 25  Suppose for a 
contradiction that it is not, so there exists 𝑥𝑥∗ ∈ 𝑋𝑋̃ such that: 

lim sup
𝑥𝑥→𝑥𝑥∗

𝑣𝑣∗(𝑥𝑥) > lim
𝑘𝑘→∞

𝑣𝑣∗(𝑥𝑥∗). 

Then, there exists 𝛿𝛿 > 0  such that for all 𝜖𝜖 > 0 , there exists 𝑥𝑥0
(𝜖𝜖) ∈ 𝑋𝑋̃  with �𝑥𝑥∗ −

𝑥𝑥0
(𝜖𝜖)�∞ < 𝜖𝜖 such that: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� > 𝛿𝛿 + 𝑣𝑣∗(𝑥𝑥∗). 

Now, by the definition of a supremum, for all 𝜖𝜖 > 0, there exists �𝑥𝑥𝑡𝑡
(𝜖𝜖)�𝑡𝑡=1

∞
 such that for 

all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) � and: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� < 𝛿𝛿 + � 𝛽𝛽𝑡𝑡−1ℱ��𝑥𝑥𝑡𝑡−1

(𝜖𝜖) , 𝑥𝑥𝑡𝑡
(𝜖𝜖)�

∞

𝑡𝑡=1
. 

Hence: 

� 𝛽𝛽𝑡𝑡−1ℱ��𝑥𝑥𝑡𝑡−1
(𝜖𝜖) , 𝑥𝑥𝑡𝑡

(𝜖𝜖)�
∞

𝑡𝑡=1
> 𝑣𝑣∗�𝑥𝑥0

(𝜖𝜖)� − 𝛿𝛿 > 𝑣𝑣∗(𝑥𝑥∗). 

Now, let 𝒮𝒮0 ≔ �𝑥𝑥 ∈ 𝑋𝑋̃�‖𝑥𝑥∗ − 𝑥𝑥‖∞ ≤ 1 � , and for 𝑡𝑡 ∈ ℕ+ , let 𝒮𝒮𝑡𝑡 ≔ Γ(𝒮𝒮𝑡𝑡−1) . Then, 
since we are assuming Γ  is compact valued, for all 𝑡𝑡 ∈ ℕ , 𝒮𝒮𝑡𝑡  is compact by the 
continuity of Γ. Furthermore, for all 𝑡𝑡 ∈ ℕ and 𝜖𝜖 ∈ (0,1), 𝑥𝑥𝑡𝑡

(𝜖𝜖) ∈ 𝒮𝒮𝑡𝑡 . Hence, ∏ 𝒮𝒮𝑡𝑡
∞
𝑡𝑡=0  

is sequentially compact in the product topology. Thus, there exists a sequence (𝜖𝜖𝑘𝑘)𝑘𝑘=1
∞  

with 𝜖𝜖𝑘𝑘 → 0 as 𝑘𝑘 → ∞ and such that 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) converges for all 𝑡𝑡 ∈ ℕ. Let 𝑥𝑥𝑡𝑡 ≔ lim

𝑘𝑘→∞
𝑥𝑥𝑡𝑡

(𝜖𝜖𝑘𝑘), 

and note that 𝑥𝑥∗ = 𝑥𝑥0 ∈ 𝒮𝒮0 ⊆ 𝑋𝑋̃, and that for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖𝑘𝑘)�, so by the 
continuity of Γ, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Thus, by Fatou’s Lemma: 

𝑣𝑣∗(𝑥𝑥∗) ≥ � 𝛽𝛽𝑡𝑡−1ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞

𝑡𝑡=1
≥ lim sup

𝑘𝑘→∞
� 𝛽𝛽𝑡𝑡−1ℱ��𝑥𝑥𝑡𝑡−1

(𝜖𝜖,𝑘𝑘), 𝑥𝑥𝑡𝑡
(𝜖𝜖,𝑘𝑘)�

∞

𝑡𝑡=1
> 𝑣𝑣∗(𝑥𝑥∗), 

which gives the required contradiction. Thus 𝑣𝑣∗ is continuous and concave, and there is 
a unique policy function which attains the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

                                                 
23 See e.g. Theorem 3.6 and following of Stokey, Lucas, and Prescott (1989). 
24 See e.g. Lemma 2.41 of Aliprantis and Border (2013). 
25 In the following, we broadly follow the proof of Lemma 3.3 of Kamihigashi and Roy (2003). 
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Results when 𝑿̃𝑿 is compact If 𝑋𝑋̃ is compact, then Γ is compact valued. Furthermore, 
𝑋𝑋̃ is clearly convex, and Γ is continuous. Thus assumption 4.3 of Stokey, Lucas, and 
Prescott (1989) (henceforth: SLP) is satisfied. Since the continuous image of a compact 
set is compact, ℱ� is bounded above and below, so assumption 4.4 of SLP is satisfied as 
well. Furthermore, ℱ� is concave and Γ is convex, so assumptions 4.7 and 4.8 of SLP 
are satisfied too. Thus, by theorem 4.6 of SLP, with ℬ defined as in equation (17) and 
𝑣𝑣∗  defined as in equation (18) , ℬ  has a unique fixed point which is continuous and 
equal to 𝑣𝑣∗. Moreover, by theorem 4.8 of SLP, there is a unique policy function which 
attains the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

F. Proof of the sufficiency of the KKT and limit conditions 

Suppose that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ , (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞  satisfy the KKT conditions given in equations (10) and 
(11) , and that 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆�����  as 𝑡𝑡 → ∞ . Let (𝑧𝑧𝑡𝑡)𝑡𝑡=0

∞   satisfy 𝑧𝑧0 = 𝑥𝑥0  and 𝑧𝑧𝑡𝑡 ∈
Γ�(𝑧𝑧𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Then, by the KKT conditions and the concavity of: 

(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) ↦ ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��, 

we have that for all 𝑇𝑇 ∈ ℕ+:26 

� 𝛽𝛽𝑡𝑡−1�ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1
 

= � 𝛽𝛽𝑡𝑡−1 �ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1
 

≥ � 𝛽𝛽𝑡𝑡−1 �ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)

𝑇𝑇

𝑡𝑡=1

− 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑧𝑧𝑡𝑡−1 − 𝜇𝜇
𝑧𝑧𝑡𝑡 − 𝜇𝜇 ��� 

≥ � 𝛽𝛽𝑡𝑡−1 ��𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+ �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,1

(1)� (𝑥𝑥𝑡𝑡−1 − 𝑧𝑧𝑡𝑡−1)� 

= � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡�𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)
𝑇𝑇

𝑡𝑡=1

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)�� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
⎦
⎥⎤

+ 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇 ) 

= 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇 ). 

                                                 
26 Here, we broadly follow the proof of Theorem 4.15 of Stokey, Lucas, and Prescott (1989). 
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Thus: 

� 𝛽𝛽𝑡𝑡−1�ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1

≥ lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇 )

= lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + 𝜆𝜆�����′Ψ⋅,1

(1)�(𝑧𝑧𝑇𝑇 − 𝜇𝜇) = lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + 𝜆𝜆�����′Ψ⋅,1

(1)�𝑧𝑧𝑇𝑇 . 
Now, suppose lim

𝑇𝑇→∞
𝛽𝛽𝑇𝑇 𝑧𝑧𝑇𝑇 ≠ 0, then since 𝑢𝑢(̃2) is negative definite: 

� 𝛽𝛽𝑡𝑡−1ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)
∞

𝑡𝑡=1
= −∞, 

so (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞  cannot be optimal. Hence, regardless of the value of lim

𝑇𝑇→∞
𝛽𝛽𝑇𝑇 𝑧𝑧𝑇𝑇 : 

� 𝛽𝛽𝑡𝑡−1�ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1
≥ 0, 

which implies that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves Problem 5. 

G. Results from and for general dynamic programming problems 

Here we consider non-linear dynamic programming problems with general objective 
functions. Consider then the following generalisation of Problem 5: 

Problem 6 Suppose Γ: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛)  is a given compact, convex valued continuous 
function. Define 𝑋𝑋 ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ(𝑥𝑥) ≠ ∅�, and suppose without loss of generality that 
for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ(𝑥𝑥) ∩ 𝑋𝑋 = Γ(𝑥𝑥). Further suppose that ℱ: 𝑋𝑋 × 𝑋𝑋 → ℝ is a given twice 
continuously differentiable, concave function, and that 𝑥𝑥0 ∈ 𝑋𝑋 and 𝛽𝛽 ∈ (0,1) are given. 
Choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
, 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1). 

For tractability, we make the following additional assumption, which enables us to 
uniformly approximate Γ by a finite number of inequalities: 

Assumption 4 𝑋𝑋 is compact. 

Then, by theorem 4.8 of Stokey, Lucas, and Prescott (1989), there is a unique solution 
to Problem 6 for any 𝑥𝑥0. We further assume the following to ensure that there is a natural 
point to approximate around:27 

Assumption 5 There exists 𝜇𝜇 ∈ 𝑋𝑋  such that for any given 𝑥𝑥0 ∈ 𝑋𝑋 , in the solution to 
Problem 6 with that 𝑥𝑥0, as 𝑡𝑡 → ∞, 𝑥𝑥𝑡𝑡 → 𝜇𝜇. 

                                                 
27 If 𝑋𝑋 is convex, then the existence of a fixed point of the policy function is a consequence of the Brouwer fixed point theorem, 
but there is no reason the fixed point guaranteed by Brouwer’s theorem should be even locally attractive. 
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Having defined 𝜇𝜇, we can let ℱ� be a second order Taylor approximation to ℱ around 
𝜇𝜇, which will take the form of equation (7). Assumption 3 will be satisfied for this 
approximation thanks to the concavity of ℱ. To apply the previous results, we also then 
need to approximate the constraints. 

Suppose first that the graph of Γ  is convex, i.e. the set {(𝑥𝑥, z)|𝑥𝑥 ∈ 𝑋𝑋, 𝑧𝑧 ∈ Γ(𝑥𝑥)}  is 
convex. Since it is also compact, by Assumption 4, for any 𝜖𝜖 > 0, there exists 𝑐𝑐 ∈ ℕ, 
Ψ(0) ∈ ℝ𝑐𝑐×1  and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛  such that with Γ�  defined as in equation (5)  and 𝑋𝑋̃ 
defined as in equation (6): 

1) 𝜇𝜇 ∈ 𝑋𝑋̃ ⊆ 𝑋𝑋, 
2) for all 𝑥𝑥 ∈ 𝑋𝑋 , there exists 𝑥𝑥 ̃ ∈ 𝑋𝑋̃ such that ‖𝑥𝑥 − 𝑥𝑥‖̃2 < 𝜖𝜖, 
3) for all 𝑥𝑥 ∈ 𝑋𝑋̃, Γ�(𝑥𝑥) ⊆ Γ(𝑥𝑥), 
4) for all 𝑥𝑥 ∈ 𝑋𝑋̃, and for all 𝑧𝑧 ∈ Γ(𝑥𝑥), there exists 𝑧𝑧 ̃ ∈ Γ�(𝑥𝑥) such that ‖𝑧𝑧 − 𝑧𝑧‖̃2 < 𝜖𝜖. 

(This follows from standard properties of convex sets.) Then, by our previous results, 
the following proposition is immediate: 

Proposition 17 Suppose we are given a problem in the form of Problem 6 (and which 
satisfies Assumption 4 and Assumption 5). If the graph of Γ is convex, then we can 
construct a problem in the form of the multiple-bound generalisation of Problem 2 
which encodes a local approximation to the original dynamic programming problem 
around 𝑥𝑥𝑡𝑡 = 𝜇𝜇. Furthermore, the LCP corresponding to this approximation will have a 
unique solution for all 𝑥𝑥0 ∈ 𝑋𝑋̃. Moreover, the approximation is consistent for quadratic 
objectives in the sense that as the number of inequalities used to approximate Γ goes to 
infinity, the approximate value function converges uniformly to the true value function. 

Unfortunately, if the graph of Γ is non-convex, then we will not be able to derive 
similar results. To see the best we could do along similar proof lines, here we merely 
sketch the construction of an approximation to the graph of Γ in this case.  We will need 
to assume that there exists 𝑧𝑧 ∈ int Γ(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋, which precludes the existence of 
equality constraints. 28  We first approximate the graph of Γ  by a polytope (i.e. 𝑛𝑛 
dimensional polygon) contained in the graph of Γ such that all points in the graph of Γ 
are within 𝜖𝜖2 of a point in the polytope. Then, providing 𝜖𝜖 is sufficiently small, for each 
simplicial surface element of the polytope, indexed by 𝑘𝑘 ∈ {1, … , 𝑐𝑐} , we can find a 
quadratic function 𝑞𝑞𝑘𝑘: 𝑋𝑋 × 𝑋𝑋 → ℝ with: 

𝑞𝑞𝑘𝑘 = Ψ𝑘𝑘
(0) + Ψ𝑘𝑘,⋅

(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
Ψ𝑘𝑘

(2) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� 

                                                 
28 This is often not too much of a restriction, since equality constraints may be substituted out. 
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for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋  and such that 𝑞𝑞𝑘𝑘 is zero at the corners of the simplicial surface element, 
such that 𝑞𝑞𝑘𝑘  is weakly negative on its surface, such that Ψ𝑘𝑘

(2)  is symmetric positive 
definite, and such that all points in the polytope are within 𝜖𝜖2 of a point in the set: 

{(𝑥𝑥, 𝑧𝑧) ∈ 𝑋𝑋 × 𝑋𝑋|∀𝑘𝑘 ∈ {1, … , 𝑆𝑆}, 0 ≤ 𝑞𝑞𝑘𝑘(𝑥𝑥, 𝑧𝑧)}. 
This gives a set of quadratic constraints that approximate Γ. If we then define: 

𝑢𝑢(̃2) ≔ 𝑢𝑢(2) + � 𝜆𝜆�����Ψ,𝑘𝑘
′ Ψ𝑘𝑘

(2)
𝑐𝑐

𝑘𝑘=1
, 

where 𝑢𝑢(2) is the Hessian of ℱ, then the Lagrangian in equation (9) is the same as what 
would be obtained from taking a second order Taylor approximation to the Lagrangian 
of the problem of maximising our non-linear objective subject to the approximate 
quadratic constraints, suggesting it may perform acceptably well for 𝑥𝑥  near 𝜇𝜇 , along 
similar lines to the results of Levine, Pearlman, and Pierse (2008) and Benigno and 
Woodford (2012). However, existence of a unique solution to the original problem 
cannot be used to establish even the existence of a solution of the approximated 
problem, since only linear approximations to the quadratic constraints would be 
imposed by our algorithm, giving a greatly reduced choice set (as the quadratic terms 
are positive definite). 

H. Proof of the properties of the BPY model 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝑖𝑖,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝜋𝜋,𝑡𝑡]′, the BPY model is in the form of Problem 2, with: 

𝐴𝐴 ≔
⎣
⎢⎡
0 −𝛼𝛼∆𝑦𝑦 0
0 0 0
0 0 0⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 −1 0

0 𝛾𝛾 −1⎦
⎥
⎥
⎤

, 𝐶𝐶 ≔
⎣
⎢⎢
⎡
0 0 0
0 1 1

𝜎𝜎
0 0 𝛽𝛽⎦

⎥⎥
⎤
. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det
⎣
⎢⎢
⎡

−1 0 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 0 1

𝜎𝜎
0 𝛾𝛾 −1⎦

⎥⎥
⎤

≠ 0 

as 𝛼𝛼𝜋𝜋 ≠ 1 and 𝛾𝛾 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹2,2, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢⎢
⎢
⎢
⎡0 𝛼𝛼∆𝑦𝑦(𝑓𝑓 − 1) + 𝛼𝛼𝜋𝜋

𝛾𝛾𝛾𝛾
1 − 𝛽𝛽𝛽𝛽 0

0 𝑓𝑓 0

0 𝛾𝛾𝛾𝛾
1 − 𝛽𝛽𝛽𝛽 0⎦

⎥⎥
⎥
⎥
⎤
. 

Hence: 

𝑓𝑓 = 𝑓𝑓 2 − 1
𝜎𝜎 �𝛼𝛼∆𝑦𝑦(𝑓𝑓 − 1) + 𝛼𝛼𝜋𝜋

𝛾𝛾𝛾𝛾
1 − 𝛽𝛽𝛽𝛽 − 𝛾𝛾𝑓𝑓 2

1 − 𝛽𝛽𝛽𝛽 �, 

i.e.: 
𝛽𝛽𝛽𝛽𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. (19) 
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When 𝑓𝑓 ≤ 0, the left hand side is negative, and when 𝑓𝑓 = 1, the left hand side equals 
(𝛼𝛼𝜋𝜋 − 1)𝛾𝛾 > 0  (by assumption on 𝛼𝛼𝜋𝜋 ), hence equation (3)  has either one or three 
solutions in (0,1) , and no solutions in (−∞, 0] . We wish to prove there is a unique 
solution in (−1,1). First note that when 𝛼𝛼𝜋𝜋 = 1, the discriminant of the polynomial is: 

�(1 − 𝛽𝛽)�𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� − 𝛾𝛾�
2

��𝛽𝛽𝛼𝛼∆𝑦𝑦�2 + 2𝛽𝛽(𝛾𝛾 − 𝜎𝜎)𝛼𝛼∆𝑦𝑦 + (𝛾𝛾 + 𝜎𝜎)2�. 
The first multiplicand is positive. The second is minimised when 𝜎𝜎 = 𝛽𝛽𝛼𝛼∆𝑦𝑦 − 𝛾𝛾, at the 
value 4𝛽𝛽𝛽𝛽𝛼𝛼∆𝑦𝑦 > 0, hence this multiplicand is positive too. Consequently, at least for 
small 𝛼𝛼𝜋𝜋, there are three real solutions for 𝑓𝑓 , so there may be multiple solutions in (0,1). 

Suppose for a contradiction that there were at least three solutions to equation (3) in 
(0,1)  (double counting repeated roots), even for arbitrary large 𝛽𝛽 ∈ (0,1) . Let 
𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 ∈ (0,1) be the three roots. Then, by Vieta’s formulas: 

3 > 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 =
�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎

𝛽𝛽𝛽𝛽 , 

3 > 𝑓𝑓1𝑓𝑓2 + 𝑓𝑓1𝑓𝑓3 + 𝑓𝑓2𝑓𝑓3 =
(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎

𝛽𝛽𝛽𝛽 , 

1 > 𝑓𝑓1𝑓𝑓2𝑓𝑓3 =
𝛼𝛼∆𝑦𝑦
𝛽𝛽𝛽𝛽 , 

so: 
(2𝛽𝛽 − 1)𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 > 𝛾𝛾 > 0 

𝛽𝛽 > 1
2 , (2𝛽𝛽 − 1)𝜎𝜎 > 𝛾𝛾, 

𝛽𝛽𝛽𝛽 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 + 𝜎𝜎(1 − 𝛽𝛽), 
2𝛽𝛽𝛽𝛽 > (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎(1 − 𝛽𝛽), 

𝛽𝛽𝛽𝛽 > 𝛼𝛼∆𝑦𝑦. 
Also, the first derivative of equation (3) must be strictly positive at 𝑓𝑓 = 1, so: 

(1 − 𝛽𝛽)�𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� + (𝛼𝛼𝜋𝜋 − 2)𝛾𝛾 > 0. 
Combining all of these inequalities gives the bounds: 

0 < 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾 + 𝜎𝜎
𝛽𝛽 , 

2 +
(1 − 𝛽𝛽)�𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 <
(3𝛽𝛽 − 1)𝜎𝜎 − (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦

𝛾𝛾 . 

Furthermore, if there are multiple solutions to equation (3), then the discriminant of its 
first derivative must be weakly positive, i.e.: 

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝛽𝛽 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� ≥ 0. 

Therefore, we have the following bounds on 𝛼𝛼𝜋𝜋: 

2 +
(1 − 𝛽𝛽)�𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 ≤
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝛽𝛽 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝛽𝛽𝛽𝛽  
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since, 

(3𝛽𝛽 − 1)𝜎𝜎 − (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦
𝛾𝛾 −

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝛽𝛽 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�
3𝛽𝛽𝛽𝛽𝛽𝛽

=
��2𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�𝛽𝛽 − 𝛾𝛾 − 𝜎𝜎� ��4𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

3𝛽𝛽𝛽𝛽𝛽𝛽 > 0 

as 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾+𝜎𝜎
𝛽𝛽 . Consequently, there exists 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1] such that: 

𝛼𝛼𝜋𝜋 = (1 − 𝜆𝜆) �2 +
(1 − 𝛽𝛽)�𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 �

+ 𝜆𝜆
⎣
⎢⎢
⎡��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝛽𝛽 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝛽𝛽𝛽𝛽
⎦
⎥⎥
⎤, 

𝛼𝛼∆𝑦𝑦 = (1 − 𝜇𝜇)[0] + 𝜇𝜇 �2𝜎𝜎 − 𝛾𝛾 + 𝜎𝜎
𝛽𝛽 �, 

𝛾𝛾 = (1 − 𝜅𝜅)[0] + 𝜅𝜅[(2𝛽𝛽 − 1)𝜎𝜎] 
These simultaneous equations have unique solutions for 𝛼𝛼𝜋𝜋, 𝛼𝛼∆𝑦𝑦 and 𝛾𝛾 in terms of 𝜆𝜆, 
𝜇𝜇  and 𝜅𝜅 . Substituting these solutions into the discriminant of equation (3)  gives a 
polynomial in 𝜆𝜆, 𝜇𝜇, 𝜅𝜅, 𝛽𝛽, 𝜎𝜎. As such, an exact global maximum of the discriminant may 
be found subject to the constraints 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1], 𝛽𝛽 ∈ �1

2 , 1�, 𝜎𝜎 ∈ [0, ∞), by using an 
exact compact polynomial optimisation solver, such as that in the Maple computer 
algebra package. Doing this gives a maximum of 0 when 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 = 1 and 𝜎𝜎 = 0. 
But of course, we actually require that 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 < 1, 𝜎𝜎 > 0. Thus, by continuity, 
the discriminant is strictly negative over the entire possible domain. This gives the 
required contradiction to our assumption of three roots to the polynomial, establishing 
that Assumption 1 holds for this model. 

Now, when 𝑇𝑇 = 1, 𝑀𝑀 is equal to the top left element of the matrix −(𝐵𝐵 + 𝐶𝐶𝐶𝐶)−1, i.e.: 

𝑀𝑀 =
𝛽𝛽𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎

𝛽𝛽𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦� 𝑓𝑓 + 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋
. 

Now, multiplying the denominator by 𝑓𝑓  gives: 
𝛽𝛽𝛽𝛽𝑓𝑓 3 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦� 𝑓𝑓 2 + �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓

= �𝛽𝛽𝛽𝛽𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓
− 𝛼𝛼∆𝑦𝑦� − �𝛽𝛽𝛼𝛼∆𝑦𝑦𝑓𝑓 − 𝛼𝛼∆𝑦𝑦� = (1 − 𝛽𝛽𝛽𝛽 )𝛼𝛼∆𝑦𝑦 > 0, 

by equation (19). Hence, the sign of 𝑀𝑀 is that of 𝛽𝛽𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎. I.e., 𝑀𝑀 
is negative if and only if: 

�(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾� − ��(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝛽𝛽 < 𝑓𝑓

<
�(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾� + ��(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝛽𝛽 . 



Online Appendices: Page 16 of 17 

The upper limit is greater than 1, so only the lower is relevant. To translate this bound 
on 𝑓𝑓  into a bound on 𝛼𝛼∆𝑦𝑦, we first need to establish that 𝑓𝑓  is monotonic in 𝛼𝛼∆𝑦𝑦. 

Totally differentiating equation (19) gives: 

�3𝛽𝛽𝛽𝛽𝑓𝑓 2 − 2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�� 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

= (1 − 𝛽𝛽𝛽𝛽 )(1 − 𝑓𝑓 ) > 0. 
Thus, the sign of 𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
 is equal to that of: 

3𝛽𝛽𝛽𝛽𝑓𝑓 2 − 2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�. 

Note, however, that this expression is just the derivative of the left hand side of equation 
(19) with respect to 𝑓𝑓 . 

To establish the sign of 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

, we consider two cases. First, suppose that equation (19) 

has three real solutions. Then, the unique solution to equation (19) in (0,1) is its lowest 
solution. Hence, this solution must be below the first local maximum of the left hand 
side of equation (19) . Consequently, at the 𝑓𝑓 ∈ (0,1) , which solves equation (19) ,  
3𝛽𝛽𝛽𝛽𝑓𝑓 2 − 2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Alternatively, 

suppose that equation (19) has a unique real solution. Then the left hand side of this 
equation cannot change sign in between its local maximum and its local minimum (if it 
has any). Thus, at the 𝑓𝑓 ∈ (0,1) at which it changes sign, we must have that 3𝛽𝛽𝛽𝛽𝑓𝑓 2 −
2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0. Therefore, in either case 

𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

> 0, meaning that 𝑓𝑓  is monotonic increasing in 𝛼𝛼∆𝑦𝑦. 

Consequently, to find the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign, it is sufficient to 
find the lowest solution with respect to both 𝑓𝑓  and 𝛼𝛼∆𝑦𝑦 of the pair of equations: 

𝛽𝛽𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0, 
𝛽𝛽𝛽𝛽𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. 

The former implies that: 
𝛽𝛽𝛽𝛽𝑓𝑓 3 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 2 + 𝜎𝜎𝜎𝜎 = 0, 

so, by the latter: 
𝛼𝛼∆𝑦𝑦𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋� 𝑓𝑓 + 𝛼𝛼∆𝑦𝑦 = 0. 

If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, then this equation holds if and only if: 
𝜎𝜎𝜎𝜎𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0. 

Therefore, the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign are given by: 
𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, 

𝑓𝑓 =
�(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾� − ��(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝛽𝛽 . 

Thus, 𝑀𝑀 is negative if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋, and 𝑀𝑀 is zero if and only if 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋. 
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I. Proof of the properties of the BPY model with level targeting 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝑖𝑖,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝑝𝑝,𝑡𝑡]′, the model of section 3.3 is in the form of Problem 
2, with: 

𝐴𝐴 ≔
⎣
⎢⎡
0 0 0
0 0 0
0 0 1⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 −1 − 1

𝜎𝜎
0 𝛾𝛾 −1 − 𝛽𝛽⎦

⎥
⎥
⎤

, 𝐶𝐶 ≔
⎣
⎢⎢
⎡
0 0 0
0 1 1

𝜎𝜎
0 0 𝛽𝛽⎦

⎥⎥
⎤
. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 0 0

0 𝛾𝛾 −1⎦
⎥
⎥
⎤

≠ 0 

as 𝛼𝛼∆𝑦𝑦 ≠ 0 and 𝛼𝛼𝜋𝜋 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹3,3, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢⎢
⎢⎢
⎢
⎡0 0

𝑓𝑓 (1 − 𝑓𝑓 )�𝜎𝜎𝛼𝛼𝜋𝜋 − 𝛼𝛼∆𝑦𝑦�
𝛼𝛼∆𝑦𝑦 + (1 − 𝑓𝑓 )𝜎𝜎

0 0 𝑓𝑓 (1 − 𝑓𝑓 − 𝛼𝛼𝜋𝜋)
𝛼𝛼∆𝑦𝑦 + (1 − 𝑓𝑓 )𝜎𝜎

0 0 𝑓𝑓 ⎦
⎥⎥
⎥⎥
⎥
⎤

, 

and so: 
𝛽𝛽𝛽𝛽𝑓𝑓 3 − �(1 + 2𝛽𝛽)𝜎𝜎 + 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾� 𝑓𝑓 2 + �(2 + 𝛽𝛽)𝜎𝜎 + (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + (1 + 𝛼𝛼𝜋𝜋)𝛾𝛾� 𝑓𝑓

− �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦� = 0. 
Now define: 

𝛼̂𝛼∆𝑦𝑦 ≔ 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦, 𝛼̂𝛼𝜋𝜋 ≔ 1 + 𝛼𝛼𝜋𝜋 
so: 

𝛽𝛽𝛽𝛽𝑓𝑓 3 − ��𝛼̂𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼̂𝛼∆𝑦𝑦 + 𝛾𝛾𝛼̂𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓 − 𝛼̂𝛼∆𝑦𝑦 = 0. 

This is identical to the equation for 𝑓𝑓  in the previous section, apart from the fact that 
𝛼̂𝛼∆𝑦𝑦 has replaced 𝛼𝛼∆𝑦𝑦 and 𝛼̂𝛼𝜋𝜋 has replaced 𝛼𝛼𝜋𝜋. Hence, by the results of the previous 
section, Assumption 1 holds for this model as well. 

Finally, for this model, with 𝑇𝑇 = 1, we have that: 

𝑀𝑀 =
(1 − 𝑓𝑓 )(1 + (1 − 𝑓𝑓 )𝛽𝛽)𝜎𝜎2 + �(1 + (1 − 𝑓𝑓 )𝛽𝛽)𝛼𝛼∆𝑦𝑦 + �(1 − 𝑓𝑓 ) + 𝛼𝛼𝜋𝜋𝑓𝑓 �𝛾𝛾� 𝜎𝜎 + (1 − 𝑓𝑓 )𝛾𝛾𝛼𝛼∆𝑦𝑦

�(1 − 𝑓𝑓 )(1 + (1 − 𝑓𝑓 )𝛽𝛽)𝜎𝜎 + (1 + (1 − 𝑓𝑓 )𝛽𝛽)𝛼𝛼∆𝑦𝑦 + �(1 − 𝑓𝑓 ) + 𝛼𝛼𝜋𝜋�𝛾𝛾� �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�
> 0. 
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