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Since global financial crisis: strong interest in macro models with 

financial frictions/shocks and in nonlinearity 

● Financial health is important state variables 

● Leverage of financial system, household/firm/government debt 

affect response to shocks: when leverage is high, then effect of 

adverse shocks magnified. 

● Fiscal policy might have stronger effect on GDP in slump, especially 

at ZLB: fiscal multipliers depend on state of economy. 

● Asymmetry between positive & negative shocks 

●Asymmetric price/wage adjustment costs (downward rigidity)  

 

Much recent work develops/estimates linearized medium-scale DSGE 

models with financial sector.  
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Examples of ESTIMATED LINEARIZED models with banks: eg, Gerali 

et al. (2010); Kollmann, Ratto & Roeger (2013); Kollmann (2013). Find 

that financial shocks have modest role in ‘normal’ times, matter more 

in crises.  LINEARIZATION may miss important effects. 

 

Theoretical literature on financial frictions often uses highly stylized 

models with exact non-linear solutions  

E.g. Brunnermeier & Sannikov (2014) (many others). 

● Argue that rare financial crises affect behavior in ‘normal times’ 

●These models too simple for reliable empirical analysis. Realistic 

analysis requires medium-scale models with many shocks & state 

variables 
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● Challenge: construction medium-scale non-linear DSGE models that 

can be taken to data in tractable manner. 

Only tractable solution method for medium-scale DSGE models: 

2
nd

 (or higher) order Taylor series approximations of policy functions 

(around deterministic steady state).  
 

● Approximations of order 2 or 3 can be computed very easily and 

FAST . Jin & Judd (2000), Sims (2000), Collard & Juillard (2002), 

Schmitt-Grohé & Uribe (2004), Kollmann (2004), Lombardo & 

Sutherland (2007), Kim, Kollmann & Kim (2010), Kollmann, Kim & Kim 

(2011).   Very widely used in macroeconomics.  

Especially user-friendly code: Dynare (Adjemian et al., 2011) 
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● Challenge: how to take 2
nd

/3
rd

 order approximated models to data? 

●Possible estimation approach: simulated method of moments (SMM) 

E.g. Andreasen, Fernandez-Villaverde & Rubio-Ramirez (2014) 

Pick model parameters such that selected predicted model moments 

are closest to empirical moments. 

Drawbacks:  

► SMM results can be sensitive to selected moments  

► SMM does not generate estimates of latent states; thus cannot 

estimate historical decompositions (contributions of different shocks 

to data) 

 

● This paper: Likelihood-based = maximize predictive ability of model  

In line with standard likelihood-based empirical estimates of linearized 

models (eg Kim (1999), Otrok (2000), Smets & Wouters (2007)) 
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Likelihood computation (prediction error decomposition): requires 

filtered estimates of states.  How to achieve this for non-lin. Model? 

KEY INGREDIENT OF APPROACH HERE: PRUNING  

● When simulating higher-order approximated model: common to use  

‘pruning’ scheme under which second-order terms are replaced by  

products of linearized solution etc.  

Pruning of n-th order approx. model implies that endogenous 

variables depend on powers of exogenous innovations ( )k

t  k=1,..,n. 
 

● Unless pruning is used, higher-order approximated models often 

generate exploding simulated time paths  

 pruning crucial for applied work based on higher-order approx. 
 

● This paper assumes that PRUNED 2
nd

 (or 3
rd

) order approximated 

model is TRUE data generating process (DGP) 
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● Method here exploits fact that PRUNED n-th order approximated 

model is LINEAR in a state vector consisting of variables solved to 

orders 1,..,n, and in products of variables solved to orders 1,..,n-1. 

● Allows convenient closed-form determination of conditional mean 

and variance of state vector 

● Key idea of this paper: apply linear updating rule of standard 

Kalman filter to pruned state equation 

● Method here is MUCH faster than particle filters, as it is not based 

on stochastic simulations. 

Monte Carlo experiments show: deterministic filter here is more 

accurate than standard particle filter, especially with big shocks & 

high curvature 

● High speed of filter allows to estimate structural model parameters 
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● Kollmann (Computational Economics, 2015) derives filter for models 

solved to 2
nd

 order using gensys2 method (Sims, 2000). 

● This paper shows how to derive filter for models solved to 2
nd

 order 

and 3
rd

 order, using Dynare.   Dynare allows great gain in speed. 

 

● Remainder of talk: 

► Key ideas of method 

► Empirical application to DGSE model with banking sector 

(Kollmann, JMCB 2013).  
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Key finding: Non-linearities matter empirically.  

1) In estimated non-linear model, financial shocks are more 

important than in estimated linearized model. 

2) Responses of macro variables to exogenous shocks are  

state-contingent 

 

 

 

 

 

 

 



10 

 

 

KEY IDEAS OF METHOD 

Generic DSGE model can be written as: 

                                       1 1 1( , , , , ) 0,t t t t t tE M S Y S Y          

1tS  : date t+1 predetermined variables (set at t) & exogenous variables (realized at t) 

1tY  : jump variables (co-states) at t+1 

1t  : exogenous i.i.d. innovations;  1 0;t tE     
2

1t tVar    ;    : scalar (shock size) 

Model solution given by decision rule: 

                                                                                     1 1( , , )t t tS F S    ,  1 1( , , )t t tY G S     

Deterministic steady state (SS):  ( ,0,0);S F S   ( ,0,0).Y G S  

Compute n-th  order Taylor series expansion of  decision rule around SS. 

Let   ;t ts S S   .t ty Y Y   
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Approximate model solutions 

● First-order: 

                                                                                                              1 1 2t t ts F s F                                                                                                                                   (1) 

● Second-order (state contingent effects of innovations) 

                                        
2

1 0 1 2 11 22 112 1 1t t t tt tt t ts F F s F F s s FF s                                           (2)  

● Third-order (state contingent conditional variance, risk premia) 
2 2 2

1 0 1 1 2 2 1 11 12 1 22 1 1( ) ( ) ...t t t t t t t t ts F F F s F F F s s F s F                      
  
 

                     122 1 1111 112 1 222 1 1 1t t tt t t t t t t t tF s s s F s s s FF                                            (3) 

ISSUE: In repeated applications of (2), (3)  higher -order terms of state variables 

appear  e.g.,  when 1ts    is quadratic in  ,ts   then 2ts   is quartic in  .ts     

Pruning removes these terms of increasing order. 

Motivation for pruning: (2) & (3) have spurious steady states (not present in the 

original model)--some of these steady states mark transitions to unstable 

behavior. Large shocks can move the model into an unstable region. Pruning 

overcomes this problem. If the first-order solution is stable, then the pruned 

higher-order solutions too are stationary 
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( ):n

ta  variable solved to n-th order accuracy.   

(1) (2)

t ta a R  , with   
(2):R  terms of order ‘n’ or higher in deviations from SS. 

(1) (2) (1) (2) (1) (1) (3)( ) ( )( )t t t t t ta b a R b R a b R          
(2) (1) (1)( ) .t t t ta b a b  

Similarly:   
(3) (1) (1) (1)( )t t t t t ta b c a b c            and    

(2) (2) (1) (1) (2) (1)( ) ( )t t t t t t ta b a b a b b    

 

PRUNING SCHEME (Kim el al. (2008)):  

► In second-order accurate model solution, replace t ts s  by  
(1) (1)

t ts s  

►  In third-order accurate model solution, replace  t ts s  by 
(2) (1) (1) (2) (1)( )t t t t ts s s s s     

and replace t t ts s s    by 
(1) (1) (1)

t t ts s s   

(1) (1)

1 1 2t t ts F s F     

(2) 2 (2) (1) (1) (1)

1 0 1 2 11 12 1 22 1 1t t t t t t t t ts F F s F F s s F s F                 

If  
(1)

1{ }ts     is stationary, then 
(2)

1{ }ts    too is stationary. 
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For  1n x  vector ,x  let 2 1 1 1 2 1 2 2 2 1 1 1( ) [ , ,.., , ,.., ,.., , , ].n n n n n n n nP x x x x x x x x x x x x x x x x x    

be  vector of all 1
2

( 1)n n  (cross-)products of elements of .x  

Can write 
(1) (1) (1)

11 11 2 ( )t t tF s s F P s   

(1) (1) (1) (1)

2 1 11 2 1 12 1 22 2 1( ) ( ) ( )t t t t tP s K P s K s K P         
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KEY INSIGHT: Pruned system can be written as a LINEAR system in terms of levels 

and products of STATE variables: 

                                                                                      1 0 1 1,t t tZ H H Z u        1 0.t tE u    

For second-order accurate model: 

      
(2) (1) (1)

1 1 1 2 1[ ; ; ( )]t t t tZ s s P s    ; 
(1)

1 2 1 12 1 22 1 1( ) ( ( ) ( ))t t t t t tu H H s H P EP             

Third-order system: 

(3) (2) (1) (2) (1) (1) (1)

1 1 1 1 1 1 2 1 3 1[ ; ; ; ; ( ); ( )]t t t t t t t tZ s s s s s P s P s         ; 

(1) (2)

1 2 1 12 1 12 1 22 2 1 2 1( ) ( ) ( ( ) ( ))t t t t t t t tu H H s H s H P EP                  

                                                                                               
(1) (1)

112 2 1 122 2 1 2 1 222 3 1( ) ( ( ) ( )) ( )t t t t t tH P s H s P EP H P           

 

Straightforward (but tedious) to compute moments of state vector. 
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CO-STATES: 

Co-states can be expressed as function of states:     1 1( )t tY J S   

2
nd

/3
rd 

 order approximation:  1 1t t ty Y Y K Z      

 

OBSERVATION EQUATION: 

At t=1,..,T analyst observes vector :obs

tx  linear function of (co-)states  

                                                
obs

t t tx Z      

t  :  i.i.d. measurement error. 
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THE FILTER 

Apply linear updating equation of standard Kalman filter to system   

1 0 1 1,t t tZ H H Z u       
obs

t t tx Z     . 

 

1 0 1 ,t t t tE Z H H E Z    

1 1 1 1' ( )t t t t t tV Z H V Z H V u    

1 1 1 1 1( ),obs obs

t t t t t t t tE Z E Z x E x          with 1 1

obs

t t t tE x E Z     

and 
1

1 1 1( ) '{ ( ) ' ( )}t t t t t tV Z V Z V  

        

1

1 1 1 1 1 1 1( ) ( ) ( ) '{ ( ) ' ( )} ( )t t t t t t t t t t tV Z V Z V Z V Z V V Z 

              
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Key issue for implementation: high dimension of augmented state vector (Z). 

 dim(Z) for 2
nd

 ord. approx. dim(Z) for 3
rd

 ord. approx. 

n=5 states 25 90 

n=10 states 75 405 

n=20 250 2210 

Reduce dimension of linear system using eigen-decomposition. 

1 0 1 1,t t tZ H H Z u      

( ( )) dim( )r rank V Z m Z    

1 : r x r matrix with of r positive eigenvalues of ( )V Z  on main diagonal 

1W : m x r matrix of associated eigenvectors of ( )V Z  with 1 1' rW W I  

1 1 1( )V Z W W      1 1 1' ( )W V Z W    

Then can write 1 1 1 1( )t t tZ E Z W z      for  r x 1 vector 1tz   s.t. 1( ) 0tE z     & 1 1( )tV z    
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Write system in terms of lower-dimensional state vector 1 :tz   

                                              1 0 1 1t t tZ H H Z u         &   1 1 1 1( )t t tZ E Z W z     

                                                                           1 1 1 1 1 1' 't t tz W H W z W u     

Observation equation: 

                   
obs

t t tx Z            1( )obs

t t tx E Z W z         

Apply Kalman filter to lower-dimensional system  

 for given values of structural model parameters can generate filtered and 

smoothed estimates of the state vectors tz    &  .tZ   

 

BAYESIAN ESTIMATION OF MODEL PARAMETERS 

Use prior distribution of structural model parameters ( )p  ; maximize posterior log-

likelihood function based on multivariate normal distribution. 

NB Disturbance in pruned state equation is non-Gaussian; however maximization of 

Gaussian likelihood produces consistent and asymptotically normal parameter 

estimates; e.g., Hamilton (ch .13, 1994).   
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Filter accuracy:  

Kalman filter applied to pruned state-space is more accurate than standard particle 

filter, and MUCH faster.  

With big shocks and strong curvature, the increase in accuracy is substantial 

(RMSEs can be orders of magnitude smaller).  

High speed makes parameter estimation feasible. Parameters tightly estimated. 

 

Illustration: Monte Carlo for basic RBC model 

1 1 1/1 1
11 1 1/

{ } ,t t t t t tV C N EV 

 
  

 
       ,t t tC I Y      

1 ,t t t tY K N     1 (1 ) .t t tK K I     

1 ,ln( ) ln( ) ,t t t       1 ,ln( ) ln( )t t t       

0.99, 4, 0.3, 0.025,       0.99,     10,  

Big shocks variant: 0.20,   0.01  . 

Small shocks variant: 0.01,   0.0005  . 
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RBC model: predicted standard deviations  (HP filtered variables) 
 

 Y C I K N     
  

 (1) (2) (3) (4) (5) (6) (7) 
 

(a) Model variant with big shocks ( 0.20, 0.01)     

Second-order model approximation 
Both shocks 0.469 0.053 1.962 0.115 0.688 0.259 0.013 
Just   shock 0.124 0.037 0.483 0.038 0.212 0.259 0.000  
Just   shock 0.420 0.034 1.706 0.104 0.608 0.000 0.013  

Linearized model  
Both shocks 0.229 0.041 1.059 0.095 0.350 0.259 0.013  
Just   shock 0.118 0.037 0.416 0.037 0.205 0.259 0.000  
Just   shock 0.196       0.016       0.974    0.087 0.284 0.000 0.013  

 

(b) Model variant with small shocks ( 0.01, 0.0005)     
Both shocks 0.011 0.002 0.053 0.005 0.018 0.013 0.001  
Just   shock 0.006 0.002 0.021 0.002 0.010 0.013 0.000 
Just   shock 0.010 0.001 0.049 0.004 0.014 0.000 0.001 

Linearized model  
Both shocks 0.011 0.002 0.053 0.005 0.018 0.013 0.001 
Just   shock 0.006 0.002 0.021 0.002 0.010 0.013 0.000 
Just   shock 0.010 0.001 0.049 0.004 0.014 0.000 0.001 
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2nd-order accurate RBC model: accuracy of filters (50 simulation runs with T=100 periods) 
 

  ALL Y C I K N     
  

 (1) (2) (3) (4) (5) (6) (7) (8)     
  

(a) Model variant with big shocks ( 0.20, 0.01)     
Average RMSEs      
Quad.Kalm. 0.176 0.039 0.006 0.039 0.435 0.039 0.141 0.023   
Particle Filt.  0.597    0.527 0.108 0.499 0.892 0.695 0.658 0.030 
Lin. Kalman 1.917 1.448 0.176 2.063 3.955 0.973 0.975 0.067 
  
 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 
Particle Filt. 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.68  
Lin. Kalman       1.00  1.00 1.00 1.00 1.00 1.00 1.00 0.98  
  

(b) Model variant with small shocks ( 0.01, 0.0005)     
Average RMSEs      
Quad.Kalm. .0042 .0007 .0003 .0019 .0099 .0019 .0035 .0002   
Particle Filt.  .0223 .0046 .0039 .0074 .0398 .0278 .0271 .0010  
Lin. Kalman .0508 .0224 .0078 .0819 .0716 .0466 .0357 .0019  
 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 
Particle Filt. 1.00 1.00 1.00 1.00 0.90 1.00 1.00   0.92 
Lin. Kalman       1.00 1.00 1.00 1.00 1.00 1.00 1.00   0.90 
 
 

‘Quad.Kalm.’: Quadratic K. filter; ‘Particle Filt.’:  Particle Filter (500,000 particles); ‘Lin. Kalman’: standard K. filter 
Observables: Y,C,I,L (in logs); i.i.d. measurement error (std. 0.04 [0.002] in big [small] shocks variants.)  
 
Computing time (filtering series T=100)—Quad. Kalman: 0.03 sec.;  Particle Filter: 81.21 sec.; Linear Kalman: 0.01 sec.  
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APPLICATION TO ‘REAL’ DATA 

Kollmann (JMCB, 2013) estimated LINEARIZED two-country DSGE model with global 

banks, using quarterly data for US and EA (1990-2010). 

Here will estimate a second-order approximation of the same model, using the same 

data.   

[Large model: 19 state variables. Estimation of 3
rd

 order approx. not feasible.] 
 

International RBC model with Global Bank (Kollmann, Enders & Mueller, EER, 2011) 

 

■ Bank deposits from Home (H), Foreign (F) households,  

■ makes loans to H,F entrepreneurs 

■ Capital requirement  

■ Lending rate spread: decreasing function of bank capital 

 

►BANK CAPITAL CHANNEL that is representative of recent models 
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● Bank 

Assets (loans) and deposits (end of period t): 1 1,t tL D  . 

Bank equity: 1 1t t tE L D    

Bank capital requirement:    1 1 1t t t tL D L     

t : ‘target’ (benchmark) bank capital ratio  

Inequality constraints technically difficult. 

Seems plausible that banks can, to some extent,      

circumvent capital requirement, but this is costly. 
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PENALTY FUNCTION 

Excess capital: 1 1 1t t t tx L D L      

Bank bears convex cost  ( )tx ,  

   (0)=0,   '( ) 0,tx   ''( ) 0tx    

Bank can choose  1 1 1t t tL D L        but this is 

expensive 
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Bank decision problem: 

Max  0 0
log( )t B

tt
E d



      s.t.                                             

1 1 1( (1 ) )D B

t t t t t tL D R L D d         1

L

t t t tL R D    

L

tR [ ]D

tR  : loan [deposit] rate (t-1 to t);    :t   loan default 

First order conditions for bank: 

● 1 1 1/ 1 'D B B

t t t t tR E d d       ;                                  

● 1 1 1

'/ 1 (1 )L B B

t t t t t tR E d d        ,           

 1 1 1 1'( (1 ) ) 0L D W W

t t t t t tR R L D            

Loan rate spread = marginal cost of excess leverage  

Spread = f(excess bank capital),  f’<0 
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Interesting non-linearity 

Spread = f(excess bank capital),  f’<0 

f’’<0 or f’’>0  ? 

 

● 11 Exogenous Shocks:  

‘Conventional’ macro shocks (in H&F): TFP, investment efficiency, preference shocks (labor 

supply), government purchases 

‘Banking shocks’:  

1) H,F  loan losses   

2) shocks to required capital ratio (fraction of bank assets that has to be funded using bank’s 

own funds) 
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►DATA : US and Euro Area (EA), 1990-2010 (quarterly), macro & banking data 

● Estimation uses linearly detrended data (logs), 12 observables 

■ US & EA  Y,C,I, Employment 

■  Bank loans; bank capital ratio (bank equity/assets); loan rate spread 

● allow for measurement error in all observables 

 

     
                                            

Time series used in estimation 
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Posterior estimates of selected parameters 
 

                                                                                         Linearized Model      2
nd

 order approx.         
Parameter                                Mean    Std             Mean    Std            

 

Slope Spread wart Bnk CapRatio -0.20 0.04 0.11 0.02             
Second deriv. of Spread -- -- -0.007 0.004   
   
% Std of shock innovations   
US loan default/GDP                    0.67 0.11 0.57 0.11     
EA loan default/GDP                     0.75 0.10 0.82 0.07  
Benchmark Bank Cap Ratio         0.59 0.10 0.95 0.17 
 
% Std of measurement error  
Loan Spread 0.02 0.00 0.02 0.00   
US Loans 0.86 0.09 0.82 0.07   
EA Loans 0.47 0.06 0.43 0.04   
Bank Capital Ratio 0.43 0.06 0.33 0.03     
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Moments of HP filtered variables 

 GDP Investment Employment 
 US       EA US      EA US       EA 
 

Standard deviations (%) 

Data 1.12 1.14 5.08 2.87 1.15 0.70 

Lin. Model 1.14 1.22 4.58 2.47 1.13 1.22 

Quadratic Model 1.15 1.15 3.72 3.19 1.17 1.13 

3
rd

-order Model  2.00 2.03 8.40 8.64 2.36     2.35params of quadr model

  

Variance shares accounted for by banking shocks 

Linearized model 

Bank Shocks 3.60 4.23 9.98 25.19 7.11 8.22 

2
nd

 order approximated model 

Bank Shocks 7.25 11.82 28.71 38.44 13.07 21.15 

Non-Bk Shocks 90.4 85.48 64.61 54.01 83.41 74.62 

Interaction 2.70 2.68 6.67 7.54 3.51 4.22  
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% change in macro aggregates (relative to trend), ‘07q4-‘09q2 recession 

(peak to trough) 

 GDP Investment Employment 
 US       EA US      EA US       EA 
 

 -8.53 -7.49 -35.15 -15.94 -6.84 -2.82  
 

 

Share of drop due to banking shocks 

Linearized model 11.7 15.7 15.2 34.8 18.9 55.7  

Quadratic model 18.9 29.8 33.6 82.1 27.5 92.9  
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In Quadratic model, responses to exogenous innovations are state-
contingent 

 

GDP Responses to 1% TFP innovations, 1%GDP loan losses,  

1ppt shock to target bank capital ratio 

                       TFP shock     Loan loss         Target bank                     

                       US      EA        US       EA        capital ratio 
 

Mean impact responses 

US GDP   1.43 -0.23 -0.05 -0.19 -0.09    

EA GDP  -0.29 1.35 -0.07 -0.27 -0.10    

 

Standard dev of impact responses 

US GDP   0.15 0.11 0.01 0.09 0.05      

EA GDP  0.14 0.15 0.01 0.08 0.09  
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CONCLUSION 

 

Developed tractable method for taking higher order approximated 
DSGE models to data, using likelihood-based approach 

 

Showed that higher-order approx. affects noticeably increased 
estimated role of financial shocks for business cycle & GFC 

 

Outlook for future work: 

Revisit other estimated DSGE models 

Explore other non-linearities (eg downward price/wage rigidity, 
asymmetric investment adjustment costs) 

Estimation of (smaller) models approximated to third order 
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